The Amuri Earthquake of September 1, 1888 (magnitude M = 6.5 to 6.8) occurred on the Hope River Segment of the Hope Fault west of Hanmer Plains. The earthquake was felt strongly in North Canterbury and North Westland and caused considerable property damage and landsliding in the Lower Hope Valley. However, damage reports and the spatial distribution of felt intensities emphasize extreme variations in seismic effects over short distances, probably due to topographic focusing and local ground conditions. Significant variations in lateral fault displacement occurred at secondary fault segment boundaries (side-steps and bends in the fault trace) during the 1888 earthquake. This historical spatial variation in lateral slip is matched by the Late Quaternary geomorphic distribution of slip on the Hope River Segment of the Hope Fault. Trenching studies at two sites on the Hope Fault have also identified evidence for five pre-historic earthquakes of similar magnitude to the 1888 earthquake and an average recurrence interval of 134 ± 27 years between events. Magnitude estimates for the 1888 earthquake are combined with a. strong ground motion attenuation expression to provide an estimate of potential ground accelerations in Amuri District during-future earthquakes on the Hope River Segment of the Hope Fault. The predicted acceleration response on bedrock sites within 20 km of the epicentral region is between 0.23 g and 0.34 g. The close match between the historic, inferred pre-historic and geomorphic distribution of lateral slip indicates that secondary fault segmentation exerts a strong structural control on rupture propagation and the expression of fault displacement at the surface. In basement rocks at depth the spatial variations in slip are inferred to be distributed within zones of pervasive cataclastic shear, on either side of the fault segment boundaries. The large variations in surface displacement across fault segment boundaries means that one must know the geometry of the fault in order to evaluate slip-rates calculated from individual locations. The average Late Quaternary slip-rate on the Hope Fault at Glynn Wye Station is between 15.5 mm/yr and 18.25 mm/yr and the rate on the subsidiary Kakapo Fault is between 5.0 mm/yr and 7.5 mm/yr. These rates have been determined from sites which are relatively free of structural complication.
The small crane on the back of a rubbish truck has picked up a whole portaloo and dumped its contents (a man with his pants around his ankles) into the rubbish. The driver tells the crane operator that he should have emptied 'the bin! ... Not the portaloo!'. A streetsign reads 'Avonside'. Refers to the use of portaloos in parts of Christchurch since the earthquake of 4th September because of damage to plumbing infrastructure. Quantity: 1 digital cartoon(s).
The cartoon shows a platter of 'Brownbait patties $2 per kilo'. In the background is a 'contaminated' river. Refers to the contamination of Canterbury's waterways after the earthquake of 4th September which resulted in sewage pipes being damaged thus contaminating the rivers. This means that people should not be attempting to catch whitebait in these rivers during the annual whitebait season which is open between 15 August and 30 November. Quantity: 1 digital cartoon(s).
The cartoon is entitled 'seismic upheaval'. Prime Minister John Key and Finance Minister Bill English stand near great seismic cracks in the ground and stare sadly at a huge wallet, 'Bill's boodle', belonging to Bill English. Vast quantities of banknotes spill out of the cash pocket in the wallet which also contains a 'travel card', a 'house card' and an 'expenses card'. The various cards in the wallet refer to expense account embarrassments relating to Bill English. Etched in the ground are the words 'Christchurch quake' and 'South Canterbury Finance'. The cartoon refers to two major events in the Canterbury area in recent times that have incurred huge government costs; these are the collapse of the South Canterbury Finance Company and the earthquake that struck early Saturday morning 4th September. The South Canterbury Finance Company has been taken into receivership by the government which has guaranteed that all 30,000 fortunate high-risk investors will be paid out $1.6b thanks to the taxpayer. Treasury is assuming that the cost of the earthquake will reach $4 billion, including $2 billion worth of estimated damage to private dwellings and their contents, $1 billion of damage to commercial property, and $1 billion worth of damage to public infrastructure. Quantity: 1 digital cartoon(s).
Light timber framed (LTF) structures provide a cost-effective and structurally efficient solution for low-rise residential buildings. This paper studies seismic performance of single-storey LTF buildings sheathed by gypsum-plasterboards (GPBs) that are a typical lining product in New Zealand houses. Compared with wood-based structural panels, GPBs tend to be more susceptible to damage when they are used in bracing walls to resist earthquake loads. This study aims to provide insights on how the bracing wall irregularity allowed by the current New Zealand standard NZS 3604 and the in-plane rigidity of ceiling diaphragms affect the overall seismic performance of these GPB-braced LTF buildings. Nonlinear time-history analyses were conducted on a series of single-storey baseline buildings with different levels of bracing wall irregularities and ceiling diaphragm rigidity. The results showed significant torsional effect caused by the eccentric bracing wall layout with semi-rigid/rigid ceiling diaphragms. On average, bracing wall drift demand caused by the extreme bracing wall irregularities was three times of that in the regular bracing wall layout under the rigid diaphragm assumption. This finding agreed well with the house survey after the 2011 Canterbury Earthquake in which significantly more damage was observed in the houses with irregular bracing wall layouts and relatively rigid diaphragms. Therefore, it is recommended to limit the level of bracing wall eccentricity and ensure the sufficiently rigid diaphragms to avoid excessive damage in these LTF buildings in future events.
In 2010 Neil Challenger, Head of the School of Landscape Architecture at Lincoln University, stated that the malls surrounding Christchurch drove the life out of the inner city of Christchurch. His economic and sociological concerns were expressed even before the earthquake occurred, and this forms the current hesitation on the rebuilding of Christchurch’s inner city. The position of this research proposal is to establish whether an urban architectural intervention can address these economic and sociological concerns and the potentially devastating effects the suburban mall has had on urban life within Christchurch. The thesis specifically asks whether establishing a mall typology as a landmark building within the inner city can strategically engage the damaged historic buildings of post-earthquake Christchurch in ways that actively preserve these historic remnants. The main intention of this research is to engage the damaged historic buildings of post-earthquake Christchurch in ways that actively preserve these remnants and are also economically viable. By preserving the remnants as active, working elements of the urban fabric, they act as historic reminders or memorials of the event and associated loss, while also actively participating in the regrowth of the city. The thesis argues that contemporary architecture can play a strategic role in these imperatives. Overall this research argues that there exists a distinct requirement for large-scale retail in the inner city urban environment that recognises and responds to the damaged cultural and historic architecture of inner city Christchurch. The objective of the thesis is to propose means to rejuvenate not only the economic vitality of central Christchurch,but also its historic character.
Refers to the controversy over the decision to demolish the Christchurch Cathedral which was severely damaged in the earthquakes of 2010 and 2011. The Anglican Bishop of Christchurch Victoria Mathews says the decision to demolish the cathedral was reached through prayer, great deliberation and with the utmost concern for safety. The Bishop says a number of options were considered before deciding to bring the walls down but the turning point was 23 December 2011, when a series of strong quakes rocked the city. At that stage the Canterbury Earthquake Authority approached the church. "CERA told us that our plans for making safe and retrieving, and then stepping back and making further decisions were no longer adequate." Christchurch City council announced their support on Twitter this afternoon (17 May 2012) - tweeting an endorsement to an immediate pause on demolition of the Cathedral to enable deeper and more open consideration of options. Quantity: 1 digital cartoon(s).
As part of a seismic retrofit scheme, surface bonded glass fiber-reinforced polymer (GFRP) fabric was applied to two unreinforced masonry (URM) buildings located in Christchurch, New Zealand. The unreinforced stone masonry of Christchurch Girls’ High School (GHS) and the unreinforced clay brick masonry Shirley Community Centre were retrofitted using surface bonded GFRP in 2007 and 2009, respectively. Much of the knowledge on the seismic performance of GFRP retrofitted URM was previously assimilated from laboratory-based experimental studies with controlled environments and loading schemes. The 2010/2011 Canterbury earthquake sequence provided a rare opportunity to evaluate the GFRP retrofit applied to two vintage URM buildings and to document its performance when subjected to actual design-level earthquake-induced shaking. Both GFRP retrofits were found to be successful in preserving architectural features within the buildings as well as maintaining the structural integrity of the URM walls. Successful seismic performance was based on comparisons made between the GFRP retrofitted GHS building and the adjacent nonretrofitted Boys’ High School building, as well as on a comparison between the GFRP retrofitted and nonretrofitted walls of the Shirley Community Centre building. Based on detailed postearthquake observations and investigations, the GFRP retrofitted URM walls in the subject buildings exhibited negligible to minor levels of damage without delamination, whereas significant damage was observed in comparable nonretrofitted URM walls. AM - Accepted Manuscript
Earthquake damaged building on a Walk around the city, May 1, 2014 Christchurch New Zealand. Demolition work on Christchurch's "distinctive" former civic building is under way. The category-2 heritage building was designed by G A J Hart and opened in 1939 as the Miller's department store. It featured the South Island's first escalator, which...
At 4.35am on Saturday 4 September 2010, a magnitude 7.1 earthquake struck near the township of Darfield in Canterbury leading to widespread damage in Christchurch and the wider central Canterbury region. Though it was reported no lives were lost, that was not entirely correct. Over 3,000 animals perished as a result of the earthquake and 99% of these deaths would have been avoidable if appropriate mitigation measures had been in place. Deaths were predominantly due to zoological vulnerability of birds in captive production farms. Other problems included lack of provision of animal welfare at evacuation centres, issues associated with multiple lost and found pet services, evacuation failure due to pet separation and stress impact on dairy herds and associated milk production. The Canterbury Earthquake has highlighted concerns over a lack of animal emergency welfare planning and capacity in New Zealand, an issue that is being progressed by the National Animal Welfare Emergency Management Group. As animal emergency management becomes better understood by emergency management and veterinary professionals, it is more likely that both sectors will have greater demands placed upon them by national guidelines and community expectations to ensure provisions are made to afford protection of animals in times of disaster. A subsequent and more devastating earthquake struck the region on Monday 22 February 2011; this article however is primarily focused on the events pertaining to the September 4 event.
In the top panel a kiwi reads the newspaper which has headlines reading 'Milk prices', 'BMW limos', 'Dodgy politicians', and 'Foreign despot news' and says 'Let's get this all in perspective'. In the lower panel the kiwi walks among the ruins and the graves of Christchurch and thinks 'Christchurch and Canterbury need our attention and care!!' Context - The very severe Christchurch earthquake of 22 February 2011 in which probably more than 200 people died and an enormous amount of structural damage has been done. The headlines refer to Fonterra putting a freeze on the price of milk, the government buying expensive limos (both of these making headlines because of the state of the economy) and lastly the 'foreign despot' is Gaddafi in Libya. Quantity: 1 digital cartoon(s).
Text reads 'If a secret microphone was smuggled into CERA's meetings?...' A group of CERA staff chat during tea at a meeting. They make unguarded comments about the state of affairs in earthquake-stricken Christchurch unaware that a microphone has been left in a sugarbowl. Context: the cartoon suggests that there seems to many Christchurch people to be a lack of real care on the part of officialdom as they struggle to recover from the earthquake damage. The microphone recalls that left 'accidentally' on a table at which Prime Minister John Key and the ACT candidate for the Epsom seat were having a highly publicised cup of tea. Then when it was discovered that a microphone had recorded their conversation John Key tried to get a court order to supress making it public. Quantity: 1 digital cartoon(s).
In September 2010 and February 2011 the Canterbury region of New Zealand was struck by two powerful earthquakes, registering magnitude 7.1 and 6.3 respectively on the Richter scale. The second earthquake was centred 10 kilometres south-east of the centre of Christchurch (the region’s capital and New Zealand’s third most populous urban area, with approximately 360,000 residents) at a depth of five kilometres. 185 people were killed, making it the second deadliest natural disaster in New Zealand’s history. (66 people were killed in the collapse of one building alone, the six-storey Canterbury Television building.) The earthquake occurred during the lunch hour, increasing the number of people killed on footpaths and in buses and cars by falling debris. In addition to the loss of life, the earthquake caused catastrophic damage to both land and buildings in Christchurch, particularly in the central business district. Many commercial and residential buildings collapsed in the tremors; others were damaged through soil liquefaction and surface flooding. Over 1,000 buildings in the central business district were eventually demolished because of safety concerns, and an estimated 70,000 people had to leave the city after the earthquakes because their homes were uninhabitable. The New Zealand Government declared a state of national emergency, which stayed in force for ten weeks. In 2014 the Government estimated that the rebuild process would cost NZ$40 billion (approximately US$27.3 billion, a cost equivalent to 17% of New Zealand’s annual GDP). Economists now estimate it could take the New Zealand economy between 50 and 100 years to recover. The earthquakes generated tens of thousands of insurance claims, both against private home insurance companies and against the New Zealand Earthquake Commission, a government-owned statutory body which provides primary natural disaster insurance to residential property owners in New Zealand. These ranged from claims for hundreds of millions of dollars concerning the local port and university to much smaller claims in respect of the thousands of residential homes damaged. Many of these insurance claims resulted in civil proceedings, caused by disputes about policy cover, the extent of the damage and the cost and/or methodology of repairs, as well as failures in communication and delays caused by the overwhelming number of claims. Disputes were complicated by the fact that the Earthquake Commission provides primary insurance cover up to a monetary cap, with any additional costs to be met by the property owner’s private insurer. Litigation funders and non-lawyer claims advocates who took a percentage of any insurance proceeds also soon became involved. These two factors increased the number of parties involved in any given claim and introduced further obstacles to resolution. Resolving these disputes both efficiently and fairly was (and remains) central to the rebuild process. This created an unprecedented challenge for the justice system in Christchurch (and New Zealand), exacerbated by the fact that the Christchurch High Court building was itself damaged in the earthquakes, with the Court having to relocate to temporary premises. (The High Court hears civil claims exceeding NZ$200,000 in value (approximately US$140,000) or those involving particularly complex issues. Most of the claims fell into this category.) This paper will examine the response of the Christchurch High Court to this extraordinary situation as a case study in innovative judging practices and from a jurisprudential perspective. In 2011, following the earthquakes, the High Court made a commitment that earthquake-related civil claims would be dealt with as swiftly as the Court's resources permitted. In May 2012, it commenced a special “Earthquake List” to manage these cases. The list (which is ongoing) seeks to streamline the trial process, resolve quickly claims with precedent value or involving acute personal hardship or large numbers of people, facilitate settlement and generally work proactively and innovatively with local lawyers, technical experts and other stakeholders. For example, the Court maintains a public list (in spreadsheet format, available online) with details of all active cases before the Court, listing the parties and their lawyers, summarising the facts and identifying the legal issues raised. It identifies cases in which issues of general importance have been or will be decided, with the expressed purpose being to assist earthquake litigants and those contemplating litigation and to facilitate communication among parties and lawyers. This paper will posit the Earthquake List as an attempt to implement innovative judging techniques to provide efficient yet just legal processes, and which can be examined from a variety of jurisprudential perspectives. One of these is as a case study in the well-established debate about the dialogic relationship between public decisions and private settlement in the rule of law. Drawing on the work of scholars such as Hazel Genn, Owen Fiss, David Luban, Carrie Menkel-Meadow and Judith Resnik, it will explore the tension between the need to develop the law through the doctrine of precedent and the need to resolve civil disputes fairly, affordably and expeditiously. It will also be informed by the presenter’s personal experience of the interplay between reported decisions and private settlement in post-earthquake Christchurch through her work mediating insurance disputes. From a methodological perspective, this research project itself gives rise to issues suitable for discussion at the Law and Society Annual Meeting. These include the challenges in empirical study of judges, working with data collected by the courts and statistical analysis of the legal process in reference to settlement. September 2015 marked the five-year anniversary of the first Christchurch earthquake. There remains widespread dissatisfaction amongst Christchurch residents with the ongoing delays in resolving claims, particularly insurers, and the rebuild process. There will continue to be challenges in Christchurch for years to come, both from as-yet unresolved claims but also because of the possibility of a new wave of claims arising from poor quality repairs. Thus, a final purpose of presenting this paper at the 2016 Meeting is to gain the benefit of other scholarly perspectives and experiences of innovative judging best practice, with a view to strengthening and improving the judicial processes in Christchurch. This Annual Meeting of the Law and Society Association in New Orleans is a particularly appropriate forum for this paper, given the recent ten year anniversary of Hurricane Katrina and the plenary session theme of “Natural and Unnatural Disasters – human crises and law’s response.” The presenter has a personal connection with this theme, as she was a Fulbright scholar from New Zealand at New York University in 2005/2006 and participated in the student volunteer cleanup effort in New Orleans following Katrina. http://www.lawandsociety.org/NewOrleans2016/docs/2016_Program.pdf
A photograph of Graeme Kershaw, Technician at the University of Canterbury Department of Physics and Astronomy, sitting among the damaged parts of the Townsend Telescope. The telescope was damaged during the 22 February 2011 earthquake, when the Observatory tower at the Christchurch Arts Centre collapsed. Kershaw has been given the task of restoring the telescope. In this photograph he is holding the telescope's clock drive. In the foreground there is a plaque reading, "The equatorial telescope and accessories in this observatory were presented to Canterbury College by James Townsend Esq. 1891. A large contribution towards the erection of the tower was made by the Canterbury Astronomical Society".
A photograph of Graeme Kershaw, Technician at the University of Canterbury Department of Physics and Astronomy, sitting among the damaged parts of the Townsend Telescope. The telescope was damaged during the 22 February 2011 earthquake, when the Observatory tower at the Christchurch Arts Centre collapsed. Kershaw has been given the task of restoring the telescope. In this photograph he is holding the telescope's clock drive. In the foreground there is a plaque reading, "The equatorial telescope and accessories in this observatory were presented to Canterbury College by James Townsend Esq. 1891. A large contribution towards the erection of the tower was made by the Canterbury Astronomical Society".
The 14 November 2016 Kaikōura earthquake had major impacts on New Zealand's transport system. Road, rail and port infrastructure was damaged, creating substantial disruption for transport operators, residents, tourists, and business owners in the Canterbury, Marlborough and Wellington regions, with knock-on consequences elsewhere. During both the response and recovery phases, a large amount of information and data relating to the transport system was generated, managed, analysed, and exchanged within and between organisations to assist decision making. To improve information and data exchanges and related decision making in the transport sector during future events and guide new resilience strategies, we present key findings from a recent post-earthquake assessment. The research involved 35 different stakeholder groups and was conducted for the Ministry of Transport. We consider what transport information was available, its usefulness, where it was sourced from, mechanisms for data transfer between organisations, and suggested approaches for continued monitoring.
<b>In the late 1960s the Wellington City Council surveyed all the commercial buildings in the city and marked nearly 200 as earthquake prone. The owners were given 15 years to either strengthen or demolish their buildings. The end result was mass demolition throughout the seventies and eighties.¹ Prompted by the Christchurch earthquakes, once again the council has published a list of over 630 earthquake prone buildings that need to be strengthened or demolished by 2030.²Of these earthquake prone buildings, the majority were built between 1880 and 1930, with 125 buildings appearing on the Wellington City Council Heritage Building List.³ This list accounts for a significant proportion of character buildings in the city. There is a danger that the aesthetic integrity of our city will be further damaged due to the urgent need to strengthen these buildings. Many of the building owners are resistant because of the high cost. By adapting these buildings to house co-workspaces, we can gain more than just the retention of the building’s heritage. The seismic upgrade provides the opportunity for the office space to be redesigned to suit changes in the ways we work. Through a design-based research approach this thesis proposes a framework that clarifies the process of adapting Wellington’s earthquake prone heritage buildings to accommodate co-working. This framework deals with the key concepts of program, structure and heritage. The framework is tested on one of Wellington’s earthquake prone heritage buildings, the Wellington Working Men’s Club, in order to demonstrate what can be gained from this strengthening process. ¹ Reid, J., “Hometown Boomtown,” in NZ On Screen (Wellington, 1983).</b> ² Wellington City Council, List of Earthquake Prone Buildings as at 06/03/2017. (Wellington: Absolutely Positively Wellington. 2017). ³ ibid.
An image from an Army News March 2011 article titled, "A Helping Hand in a Disaster Zone". The image is of the Cathedral of the Blessed Sacrament on Barbadoes Street, severely damaged after the 22 February 2011 earthquake. The domes on either side of the Cathedral have collapsed and are lying in the area in front.
A digitally manipulated image of furniture and machinery. The photographer comments, "This furniture restoration company got caught in the middle of the Christchurch earthquake and lost a whole wall. After constant exposure to the elements everything now needs a bit of restoration. They are now working in a different part of Christchurch, but their past can still be seen".
A photograph of the earthquake damage to Knox Church on the corner of Bealey Avenue and Victoria Street. The walls of the gables have crumbled, the bricks falling onto the footpath. Many have been cleared away and now sit in a pile on the road. Road cones, metal fences, and cordon tape have been placed around the building.
A photograph of the earthquake damage to the corner of Woodham Road and Avonside Drive. There are large cracks in the road, and flooding and liquefaction. Wire fencing and road cones have been placed around parts of the road that are unsafe. Two signs reading, "Road closed" and, "No entry" can be seen at the entrance to Avonside Drive.
A photograph of emergency management personnel examining the earthquake damage to the Flight Centre's Link Centre on High Street. A brick wall on the neighbouring building has collapsed, falling through the roof of the store, and spilling out into the street. To the left, USAR codes have been spray-painted on the windows of the Coffee Culture.
A photograph of the earthquake damage to Munn's the Man store on Armagh Street. The outer wall of the top storey has collapsed, the bricks and other rubble spilling onto the car park below. Wire fences placed around the building have toppled over. Steel bracing has been set up inside the building to hold the roof up.
Another house has gone from Seabreeze Close, Pacific Park, Bexley, leaving just the concrete base, a few floor tiles and the smashed toilet (throne). Houses are being demolished (85%) or deconstructed/shifted (15%) as a result of land damage in the major earthquakes of 4th September 2010, 22nd February 2011, 13th June 2011 and 23rd December 2...
Tsunami have the potential to cause significant disruptions to society, including damage to infrastructure, critical to the every-day operation of society. Effective risk management is required to reduce the potential tsunami impacts to them. Christchurch city, situated on the eastern coast of New Zealand’s South Island, is exposed to a number of far-field tsunami hazards. Although the tsunami hazard has been well identified for Christchurch city infrastructure, the likely impacts have not been well constrained. To support effective risk management a credible and realistic infrastructure impact model is required to inform risk management planning. The objectives of this thesis are to assess the impacts on Christchurch city infrastructure from a credible, hypothetical far-field tsunami scenario. To achieve this an impact assessment process is adopted, using tsunami hazard and exposure measures to determine asset vulnerability and subsequent impacts. However, the thesis identified a number of knowledge gaps in infrastructure vulnerability to tsunami. The thesis addresses this by using two approaches: a tsunami damage matrix; and the development of tsunami fragility functions. The tsunami damage matrix pools together tsunami impacts on infrastructure literature, and post-event field observations. It represents the most comprehensive ‘look-up’ resource for tsunami impacts to infrastructure to date. This damage matrix can inform the assessment of tsunami impacts on Christchurch city infrastructure by providing a measure of damage likelihood at various hazard intensities. A more robust approach to tsunami vulnerability of infrastructure are fragility functions, which are also developed in this thesis. These were based on post-event tsunami surveys of the 2011 ‘Tohoku’ earthquake tsunami in Japan. The fragility functions are limited to road and bridge infrastructure, but represent the highest resolution measure of vulnerability for the given assets. As well as providing a measure of damage likelihood for a given tsunami hazard intensity, these also indicate a level of asset damage. The impact assessment process, and synthesized vulnerability measures, are used to run tsunami impact models for Christchurch infrastructure to determine the probability of asset damage occurring and to determine if impact will reach or exceed a given damage state. The models suggest that infrastructure damage is likely to occur in areas exposed to tsunami inundation in this scenario, with significant damage identified for low elevation roads and bridges. The results are presented and discussed in the context of the risk management framework, with emphasis on using risk assessment to inform risk treatment, monitoring and review. In summary, this thesis A) advances tsunami vulnerability and impact assessment methodologies for infrastructure and B) provides a tsunami impact assessment framework for Christchurch city infrastructure which will inform infrastructure tsunami risk management for planners, emergency managers and lifelines groups.
Questions to Ministers 1. AMY ADAMS to the Minister of Finance: How many claims does the Earthquake Commission expect to receive as a result of the earthquakes in Canterbury since 4 September 2010? 2. Hon PHIL GOFF to the Prime Minister: Does he stand by his statement that "rebuilding Christchurch is a key priority for the Government this year"; if so, what rebuilding plans are currently in place? 3. METIRIA TUREI to the Minister for Social Development and Employment: Does she stand by her statement that state support is for "people to fall back on when they really need it"? 4. Hon ANNETTE KING to the Prime Minister: Does he stand by his statement that New Zealanders were "more than compensated" for last year's increase in GST? 5. NICKY WAGNER to the Minister for Social Development and Employment: How is her Ministry responding to support the Christchurch recovery following last month's earthquake? 6. JACINDA ARDERN to the Prime Minister: Does he stand by his answers to Oral Question number one on 8 March 2011; if not, why not? 7. AARON GILMORE to the Minister of Corrections: What support has the Department of Corrections provided to the people of Christchurch following last month's earthquake? 8. Dr KENNEDY GRAHAM to the Minister of Finance: How much has he budgeted to raise from the Christchurch Earthquake Appeal and has this figure been revised in light of the Japanese earthquake? 9. JO GOODHEW to the Minister of Internal Affairs: What work will the New Zealand Urban Search and Rescue team be carrying out in Japan? 10. Hon SHANE JONES to the Minister of Transport: Does he stand by his statement that the $300 million bill for restoring the Christchurch road network won't be causing any "dramatic issues" and what is his timeframe for the completion of this work? 11. COLIN KING to the Minister of Transport: What work has been done to repair and reopen Christchurch's roads and highways following the 22 February earthquake? 12. Hon STEVE CHADWICK to the Minister for Arts, Culture and Heritage: Has he had any discussions with the Minister for Canterbury Earthquake Recovery about heritage buildings or recovering cultural artefacts from buildings damaged by the earthquake on 22 February; if so, what did he say to the Minister?
Text reads 'Water - One minute too much - The next, not enough' In the first frame a man is fed up with another downpour and in the second frame there is shown a plastic bottle of drinking water. Refers to the amount of rain in recent times but also the need for bottled or boiled water In Canterbury after the earthquake of 4th September 2010 which caused major damage to sewage and water systems. Quantity: 1 digital cartoon(s).
On February 22, 2011, a magnitude Mw 6.2 earthquake affected the Canterbury region, New Zealand, resulting in many fatalities. Liquefaction occurred across many areas, visible on the surface as ‘‘sand volcanoes’’, blisters and subsidence, causing significant damage to buildings, land and infrastructure. Liquefaction occurred at a number of sites across the Christchurch Boys High School sports grounds; one area in particular contained a piston ground failure and an adjacent silt volcano. Here, as part of a class project, we apply near-surface geophysics to image these two liquefaction features and determine whether they share a subsurface connection. Hand auger results enable correlation of the geophysical responses with the subsurface stratigraphy. The survey results suggest that there is a subsurface link, likely via a paleo-stream channel. The anomalous responses of the horizontal loop electromagnetic survey and electrical resistivity imaging highlight the disruption of the subsurface electrical properties beneath and between the two liquefaction features. The vertical magnetic gradient may also show a subtle anomalous response in this area, however the results are inconclusive. The ground penetrating radar survey shows disruption of the subsurface stratigraphy beneath the liquefaction features, in particular sediment mounding beneath the silt ejection (‘‘silt volcano’’) and stratigraphic disruption beneath the piston failure. The results indicate how near-surface geophysics allow the characteristics of liquefaction in the subsurface to be better understood, which could aid remediation work following liquefaction-induced land damage and guide interpretation of geophysical surveys of paleoliquefaction features.
The arms of a woman who represents New Zealand reach out to a baby to whom she has just given birth. The baby represents '2011' and is a particularly hideous specimen. The doctor who holds the baby says 'He's cute now but wait 'til he gets older!' Outside the window is seen a cracked and damaged landscape and a storm rages; the headstone of a grave reads 'RIP 2010'. Context - Christchurch or maybe the South Island have had a bad year because of the Pike River Mine disaster and the earthquake of 4 September 2010. There is perhaps prescience in this cartoon because on 22 February 2011 a much worse earthquake hit Christchurch. Published in The Press Quantity: 1 digital cartoon(s).
Text above reads 'Prince William comes to Christchurch...' A special royal portaloo has been arranged for the visit of Prince William to Christchurch; it is built to resemble a castle and has gold door fittings. On either side of the portaloo stands a sentry guard. The prince who is inside whispers 'I can't find the royal flush button' (wordplay on 'royal flush' and the 'flush' of a toilet) Context - Prince William visited the Civil Defence headquarters in Christchurch with Earthquake Recovery Minister Gerry Brownlee and Christchurch Mayor Bob Parker on the 17th March to see the damage caused by the earthquakes of the 4th September 2010 and the 22 February 2011. Quantity: 1 digital cartoon(s).