Search

found 13 results

Articles, UC QuakeStudies

A document which explains the pre-approval process for specialist lining contractors working on the SCIRT horizontal repair programme.This document has had sections removed and redacted to protect contractors' commercial interests.For a current list of approved contractors authorised to carry out lining works on Christchurch City Council assets, contact the Council.

Research papers, University of Canterbury Library

essential systems upon which the well-being and functioning of societies depend. They deliver a service or a good to the population using a network, a combination of spatially-distributed links and nodes. As they are interconnected, network elements’ functionality is also interdependent. In case of a failure of one component, many others could be momentarily brought out-of-service. Further problems arise for buried infrastructure when it comes to buried infrastructure in earthquake and liquefaction-prone areas for the following reasons: • Technically more demanding inspections than those required for surface horizontal infrastructure • Infrastructure subject to both permanent ground displacement and transient ground deformation • Increase in network maintenance costs (i.e. deterioration due to ageing material and seismic hazard) These challenges suggest careful studies on network resilience will yield significant benefits. For these reasons, the potable water network of Christchurch city (Figure 1) has been selected for its well-characterized topology and its extensive repair dataset.

Videos, UC QuakeStudies

A video of a presentation by Ian Campbell, Executive General Manager of the Stronger Christchurch Rebuild Team (SCIRT), during the third plenary of the 2016 People in Disasters Conference. The presentation is titled, "Putting People at the Heart of the Rebuild".The abstract for this presentation reads: On the face of it, the Stronger Christchurch Infrastructure Rebuild Team (SCIRT) is an organisation created to engineer and carry out approximately $2B of repairs to physical infrastructure over a 5-year period. Our workforce consists primarily of engineers and constructors who came from far and wide after the earthquakes to 'help fix Christchurch'. But it was not the technical challenges that drew them all here. It was the desire and ambition expressed in the SCIRT 'what we are here for' statement: 'to create resilient infrastructure that gives people security and confidence in the future of Christchurch'. For the team at SCIRT, people are at the heart of our rebuild programme. This is recognised in the intentional approach SCIRT takes to all aspects of its work. The presentation will touch upon how SCIRT communicated with communities affected by our work and how we planned and coordinated the programme to minimise the impacts, while maximising the value for both the affected communities and the taxpayers of New Zealand and rate payers of Christchurch funding it. The presentation will outline SCIRT's very intentional approach to supporting, developing, connecting, and enabling our people to perform, individually, and collectively, in the service of providing the best outcome for the people of Christchurch and New Zealand.

Research Papers, Lincoln University

The Canterbury region of New Zealand was shaken by major earthquakes on the 4th September 2010 and 22nd February 2011. The quakes caused 185 fatalities and extensive land, infrastructure and building damage, particularly in the Eastern suburbs of Christchurch city. Almost 450 ha of residential and public land was designated as a ‘Red Zone’ unsuitable for residential redevelopment because land damage was so significant, engineering solutions were uncertain, and repairs would be protracted. Subsequent demolition of all housing and infrastructure in the area has left a blank canvas of land stretching along the Avon River corridor from the CBD to the sea. Initially the Government’s official – but enormously controversial – position was that this land would be cleared and lie fallow until engineering solutions could be found that enabled residential redevelopment. This paper presents an application of a choice experiment (CE) that identified and assessed Christchurch residents’ preferences for different land use options of this Red Zone. Results demonstrated strong public support for the development of a recreational reserve comprising a unique natural environment with native fauna and flora, healthy wetlands and rivers, and recreational opportunities that align with this vision. By highlighting the value of a range of alternatives, the CE provided a platform for public participation and expanded the conversational terrain upon which redevelopment policy took place. We conclude the method has value for land use decision-making beyond the disaster recovery context.

Research papers, University of Canterbury Library

Sewerage systems convey sewage, or wastewater, from residential or commercial buildings through complex reticulation networks to treatment plants. During seismic events both transient ground motion and permanent ground deformation can induce physical damage to sewerage system components, limiting or impeding the operability of the whole system. The malfunction of municipal sewerage systems can result in the pollution of nearby waterways through discharge of untreated sewage, pose a public health threat by preventing the use of appropriate sanitation facilities, and cause serious inconvenience for rescuers and residents. Christchurch, the second largest city in New Zealand, was seriously affected by the Canterbury Earthquake Sequence (CES) in 2010-2011. The CES imposed widespread damage to the Christchurch sewerage system (CSS), causing a significant loss of functionality and serviceability to the system. The Christchurch City Council (CCC) relied heavily on temporary sewerage services for several months following the CES. The temporary services were supported by use of chemical and portable toilets to supplement the damaged wastewater system. The rebuild delivery agency -Stronger Christchurch Infrastructure Rebuild Team (SCIRT) was created to be responsible for repair of 85 % of the damaged horizontal infrastructure (i.e., water, wastewater, stormwater systems, and roads) in Christchurch. Numerous initiatives to create platforms/tools aiming to, on the one hand, support the understanding, management and mitigation of seismic risk for infrastructure prior to disasters, and on the other hand, to support the decision-making for post-disaster reconstruction and recovery, have been promoted worldwide. Despite this, the CES in New Zealand highlighted that none of the existing platforms/tools are either accessible and/or readable or usable by emergency managers and decision makers for restoring the CSS. Furthermore, the majority of existing tools have a sole focus on the engineering perspective, while the holistic process of formulating recovery decisions is based on system-wide approach, where a variety of factors in addition to technical considerations are involved. Lastly, there is a paucity of studies focused on the tools and frameworks for supporting decision-making specifically on sewerage system restoration after earthquakes. This thesis develops a decision support framework for sewerage pipe and system restoration after earthquakes, building on the experience and learning of the organisations involved in recovering the CSS following the CES in 2010-2011. The proposed decision support framework includes three modules: 1) Physical Damage Module (PDM); 2) Functional Impact Module (FIM); 3) Pipeline Restoration Module (PRM). The PDM provides seismic fragility matrices and functions for sewer gravity and pressure pipelines for predicting earthquake-induced physical damage, categorised by pipe materials and liquefaction zones. The FIM demonstrates a set of performance indicators that are categorised in five domains: structural, hydraulic, environmental, social and economic domains. These performance indicators are used to assess loss of wastewater system service and the induced functional impacts in three different phases: emergency response, short-term recovery and long-term restoration. Based on the knowledge of the physical and functional status-quo of the sewerage systems post-earthquake captured through the PDM and FIM, the PRM estimates restoration time of sewer networks by use of restoration models developed using a Random Forest technique and graphically represented in terms of restoration curves. The development of a decision support framework for sewer recovery after earthquakes enables decision makers to assess physical damage, evaluate functional impacts relating to hydraulic, environmental, structural, economic and social contexts, and to predict restoration time of sewerage systems. Furthermore, the decision support framework can be potentially employed to underpin system maintenance and upgrade by guiding system rehabilitation and to monitor system behaviours during business-as-usual time. In conjunction with expert judgement and best practices, this framework can be moreover applied to assist asset managers in targeting the inclusion of system resilience as part of asset maintenance programmes.

Audio, Radio New Zealand

ANDREW LITTLE to the Prime Minister: What are the priorities for the Government in assisting communities affected by yesterday’s earthquake? MATT DOOCEY to the Minister of Finance: What advice has he received about the economic impact of the Kaikōura earthquake? EUGENIE SAGE to the Minister of Transport: What updates can he give on the transport sector’s response to earthquake damage to State Highway 1 and the rail line between Seddon and Cheviot? GRANT ROBERTSON to the Minister of Finance: What is his initial assessment of the fiscal impact of yesterday morning’s earthquake and what, if any, new or changed Budget allocations is he considering in response to the earthquake? PAUL FOSTER-BELL to the Minister of Civil Defence: How is the Government supporting people affected by the Kaikōura earthquake? RON MARK to the Minister of Civil Defence: Can the Government assure New Zealanders on our level of preparedness for all natural disasters? SUE MORONEY to the Minister of Transport: What roads and public transport services are currently not operational following damage from the earthquake yesterday and when is it expected access and services will be restored? BRETT HUDSON to the Minister of Transport: What action is the Government taking to repair damaged transport infrastructure following the Kaikōura earthquake? GARETH HUGHES to the Minister of Broadcasting: Will she join with me to acknowledge the work of all media in New Zealand, which is so important in times of natural disaster and crisis; if so, will she consider increasing our public broadcaster Radio New Zealand’s funding in Budget 2017? CLAYTON MITCHELL to the Minister of Civil Defence: What progress has been made, if any, on new civil defence legislation which focuses on large and significant events such as the Christchurch and Kaikōura earthquakes? ALASTAIR SCOTT to the Minister of Health: What updates has he received on the Government’s health response to the Kaikōura earthquake? CLARE CURRAN to the Minister of Civil Defence: What actions have been taken by Civil Defence to ensure those people in the areas worst hit by the earthquake have enough food, clothing, water, and shelter?