Photograph captioned by Fairfax, "Gunyah homestead was badly damaged during the September earthquake, but the Cotterill family are picking up the pieces and rebuilding. Master bedroom where a large brick chimney fell through the roof crushing the bed where William and Simonetta Cottrell had been sleeping moments before".
Photograph captioned by Fairfax, "John Arbuckle, owner of St Martins Garage Ltd, with one of his two 60,000 litre fuel tanks that are being removed to be checked for earthquake damage. The fibreglass tanks haven't leaked, but had moved following the Heathcote shake".
Soil Liquefaction during Recent Large-Scale Earthquakes contains selected papers presented at the New Zealand – Japan Workshop on Soil Liquefaction during Recent Large-Scale Earthquakes (Auckland, New Zealand, 2-3 December 2013). The 2010-2011 Canterbury earthquakes in New Zealand and the 2011 off the Pacific Coast of Tohoku Earthquake in Japan have caused significant damage to many residential houses due to varying degrees of soil liquefaction over a very wide extent of urban areas unseen in past destructive earthquakes. While soil liquefaction occurred in naturally-sedimented soil formations in Christchurch, most of the areas which liquefied in Tokyo Bay area were reclaimed soil and artificial fill deposits, thus providing researchers with a wide range of soil deposits to characterize soil and site response to large-scale earthquake shaking. Although these earthquakes in New Zealand and Japan caused extensive damage to life and property, they also serve as an opportunity to understand better the response of soil and building foundations to such large-scale earthquake shaking. With the wealth of information obtained in the aftermath of both earthquakes, information-sharing and knowledge-exchange are vital in arriving at liquefaction-proof urban areas in both countries. Data regarding the observed damage to residential houses as well as the lessons learnt are essential for the rebuilding efforts in the coming years and in mitigating buildings located in regions with high liquefaction potential. As part of the MBIE-JSPS collaborative research programme, the Geomechanics Group of the University of Auckland and the Geotechnical Engineering Laboratory of the University of Tokyo co-hosted the workshop to bring together researchers to review the findings and observations from recent large-scale earthquakes related to soil liquefaction and discuss possible measures to mitigate future damage. http://librarysearch.auckland.ac.nz/UOA2_A:Combined_Local:uoa_alma21151785130002091
Photograph captioned by Fairfax, "Prime Minister John Key, centre, visited Christchurch after its 7.1 magnitude earthquake at 04:35 Saturday morning. Mayor Bob Parker took him on a tour of the city which was punctuated by a fire breaking out in a building on Worcester Street. MP John Carter, and Key look at the damage".
A photograph of Graeme Kershaw, Technician at the University of Canterbury Department of Physics and Astronomy, scratching his head as he looks at the damaged clock drive of the Townsend Telescope. The telescope was damaged during the 22 February 2011 earthquake, when the Observatory tower at the Christchurch Arts Centre collapsed. Kershaw has been given the task of restoring the telescope.
The objective of this study is to examine the influence of near-fault motions on liquefaction triggering in Christchurch and neighboring towns during the 2010-2011 Canterbury earthquake sequence (CES). The CES began with the 4 September 2010, Mw7.1 Darfield earthquake and included up to ten events that triggered liquefaction. However, most notably, widespread liquefaction was induced by the Darfield earthquake and the Mw6.2, 22 February 2011 Christchurch earthquake. Of particular relevance to this study is the forward directivity effects that were prevalent in the motions recorded during the Darfield earthquake, and to a much lesser extent, during the Christchurch earthquake. A 2D variant of the Richart-Newmark fatigue theory was used to compute the equivalent number of cycles (neq) for the ground motions, where volumetric strain was used as the damage metric. This study is unique because it considers the contribution and phasing of both the fault-normal and fault-parallel components of motion on neq and the magnitude scaling factor (MSF). It was found that when the fault-normal and fault-parallel motions were treated individually, the former yielded a lower neq than the latter. Additionally, when the combined effects of fault-normal and fault-parallel components were considered, it was found that the MSF were higher than those commonly used. This implies that motions containing near-fault effects are less demanding on the soil than motions that do not. This may be one of several factors that resulted in less severe liquefaction occurring during the Darfield earthquake than the Christchurch earthquake.
Earthquake Engineering is facing an extraordinarily challenging era, the ultimate target being set at increasingly higher levels by the demanding expectations of our modern society. The renewed challenge is to be able to provide low-cost, thus more widely affordable, high-seismic-performance structures capable of sustaining a design level earthquake with limited or negligible damage, minimum disruption of business (downtime) or, in more general terms, controllable socio-economical losses. The Canterbury earthquakes sequence in 2010-2011 has represented a tough reality check, confirming the current mismatch between societal expectations over the reality of seismic performance of modern buildings. In general, albeit with some unfortunate exceptions, modern multi-storey buildings performed as expected from a technical point of view, in particular when considering the intensity of the shaking (higher than new code design) they were subjected to. As per capacity design principles, plastic hinges formed in discrete regions, allowing the buildings to sway and stand and people to evacuate. Nevertheless, in many cases, these buildings were deemed too expensive to be repaired and were consequently demolished. Targeting life-safety is arguably not enough for our modern society, at least when dealing with new building construction. A paradigm shift towards damage-control design philosophy and technologies is urgently required. This paper and the associated presentation will discuss motivations, issues and, more importantly, cost-effective engineering solutions to design buildings capable of sustaining low-level of damage and thus limited business interruption after a design level earthquake. Focus will be given to the extensive research and developments in jointed ductile connections based upon controlled rocking & dissipating mechanisms for either reinforced concrete and, more recently, laminated timber structures. An overview of recent on-site applications of such systems, featuring some of the latest technical solutions developed in the laboratory and including proposals for the rebuild of Christchurch, will be provided as successful examples of practical implementation of performance-based seismic design theory and technology.
Christchurch's historic Theatre Royal will reopen for business in November, with bookings about to open for the first show, the Royal New Zealand Ballet season of "A Christmas Carol" The 106-year old theatre has been closed for almost four years because of earthquake damage in the 2010 and 2011 earthquakes. The $40million rebuild and restoration project will be completed over the next five months and on 17 November 2014, the 'Grand Old Lady' of New Zealand theatre will reopen her doors for performances. With so few venues for performance left in the city, including the Town Hall out of commission indefinitely, the rebuild of the Theatre Royal is very good news for Christchurch audiences Chief executive Neil Cox explains the process of getting oldest Edwardian theatre in the country back in use and mounting the large scale theatrical productions it has been famous for.
Text above reads 'Prince William comes to Christchurch...' A special royal portaloo has been arranged for the visit of Prince William to Christchurch; it is built to resemble a castle and has gold door fittings. On either side of the portaloo stands a sentry guard. The prince who is inside whispers 'I can't find the royal flush button' (wordplay on 'royal flush' and the 'flush' of a toilet) Context - Prince William visited the Civil Defence headquarters in Christchurch with Earthquake Recovery Minister Gerry Brownlee and Christchurch Mayor Bob Parker on the 17th March to see the damage caused by the earthquakes of the 4th September 2010 and the 22 February 2011. Quantity: 1 digital cartoon(s).
Following the 2010/2011 Canterbury earthquakes a detailed campaign of door to door assessments was conducted in a variety of areas of Christchurch to establish the earthquake performance of residential dwellings having masonry veneer as an external cladding attached to a lightweight timber framing system. Specifically, care was taken to include regions of Christchurch which experienced different levels of earthquake shaking in order to allow comparison between the performance of different systems and different shaking intensities. At the time of the inspections the buildings in the Christchurch region had been repeatedly subjected to large earthquakes, presenting an opportunity for insight into the seismic performance of masonry veneer cladding. In total just under 1100 residential dwellings were inspected throughout the wider Christchurch area, of which 24% were constructed using the older nail-on veneer tie system (prior to 1996) and 76% were constructed using screw fixed ties to comply with the new 1996 standards revision (post-1996), with 30% of all inspected houses being of two storey construction. Of the inspected dwellings 27% had some evidence of liquefaction, ground settlement or lateral spreading. Data such as damage level, damage type, crack widths, level of repair required and other parameters were collected during the survey. A description of the data collection processes and a snapshot of the analysis results are presented within. http://15ibmac.com/home/
Awaiting demolition
Photograph captioned by Fairfax, "Proof that one can make a difference. Beth Price (year 7, age 12), a pupil from Hadlow School in Masterton was the instigator and driver for a fundraiser effort for Christchurch's Belfast School to the tune of over $2000 after seeing the damage caused by Christchurch's September 4th earthquake. Beth Price in her school uniform at Belfast School".
Photograph captioned by Fairfax, "Proof that one can make a difference. Beth Price (year 7, age 12), a pupil from Hadlow School in Masterton was the instigator and driver for a fundraiser effort for Christchurch's Belfast School to the tune of over $2000, after seeing the damage caused by Christchurch's September 4th earthquake. Beth Price in her school uniform at Belfast School".
Photograph captioned by Fairfax, "Proof that one can make a difference. Beth Price (year 7, age 12), a pupil from Hadlow School in Masterton was the instigator and driver for a fundraiser effort for Christchurch's Belfast School to the tune of over $2000 after seeing the damage caused by Christchurch's September 4th earthquake. Beth Price in her school uniform at Belfast School".
The region in and around Christchurch, encompassing Christchurch city and the Selwyn and Waimakariri districts, contains more than 800 road, rail, and pedestrian bridges. Most of these bridges are reinforced concrete, symmetric, and have small to moderate spans (15–25 m). The 22 February 2011 moment magnitude (Mw) 6.2 Christchurch earthquake induced high levels of localized ground shaking (Bradley and Cubrinovski 2011, page 853 of this issue; Guidotti et al. 2011, page 767 of this issue; Smyrou et al. 2011, page 882 of this issue), with damage to bridges mainly confined to the central and eastern parts of Christchurch. Liquefaction was evident over much of this part of the city, with lateral spreading affecting bridges spanning both the Avon and Heathcote rivers.
On February 22, 2011, a magnitude Mw 6.2 earthquake affected the Canterbury region, New Zealand, resulting in many fatalities. Liquefaction occurred across many areas, visible on the surface as ‘‘sand volcanoes’’, blisters and subsidence, causing significant damage to buildings, land and infrastructure. Liquefaction occurred at a number of sites across the Christchurch Boys High School sports grounds; one area in particular contained a piston ground failure and an adjacent silt volcano. Here, as part of a class project, we apply near-surface geophysics to image these two liquefaction features and determine whether they share a subsurface connection. Hand auger results enable correlation of the geophysical responses with the subsurface stratigraphy. The survey results suggest that there is a subsurface link, likely via a paleo-stream channel. The anomalous responses of the horizontal loop electromagnetic survey and electrical resistivity imaging highlight the disruption of the subsurface electrical properties beneath and between the two liquefaction features. The vertical magnetic gradient may also show a subtle anomalous response in this area, however the results are inconclusive. The ground penetrating radar survey shows disruption of the subsurface stratigraphy beneath the liquefaction features, in particular sediment mounding beneath the silt ejection (‘‘silt volcano’’) and stratigraphic disruption beneath the piston failure. The results indicate how near-surface geophysics allow the characteristics of liquefaction in the subsurface to be better understood, which could aid remediation work following liquefaction-induced land damage and guide interpretation of geophysical surveys of paleoliquefaction features.
A video of an interview with Mayor Bob Parker, recorded at the Civil Defence Headquarters in the Christchurch Art Gallery on the evening of the 22 February 2011. Parker talks about the fatalities and damage caused by the 22 February 2011 earthquake.
The small crane on the back of a rubbish truck has picked up a whole portaloo and dumped its contents (a man with his pants around his ankles) into the rubbish. The driver tells the crane operator that he should have emptied 'the bin! ... Not the portaloo!'. A streetsign reads 'Avonside'. Refers to the use of portaloos in parts of Christchurch since the earthquake of 4th September because of damage to plumbing infrastructure. Quantity: 1 digital cartoon(s).
The assessment of damage and remaining capacity after an earthquake is an immediate measure to determine whether a reinforced concrete (RC) building is usable and safe for occupants. The recent Christchurch earthquake (22 February 2011) caused a uniquely severe level of structural damage to modern buildings, resulting in extensive damage to the building stock. About 60% of damaged multistorey concrete buildings (3 storeys and up) were demolished after the earthquake, and the cost of reconstruction amounted to 40 billion NZD. The aftermath disclosed issues of great complexities regarding the future of the RC buildings damaged by the earthquakes. This highlighted the importance of post-event decision-making, as the outcome will allow the appropriate course of action—demolition, repair or acceptance of the existing building—to be considered. To adopt the proper strategy, accurate assessment of the residual capacity and the level of damage is required. This doctoral dissertation aims to assess the damage and remaining capacity at constituent material and member level (i.e., concrete material and beams) through a systematic approach in an attempt to address part of an existing gap in the available literature. Since the residual capacity of RC members is not unique and depends on previously applied loading history, post-event residual capacity in this study was assessed in terms of fraction of fatigue life (i.e., the number of cycles required to failure). This research comprises three main parts: (1) residual capacity and damage assessment at material level (i.e., concrete), (2) post-yield bond deterioration and damage assessment at the interface of steel and concrete, and, finally, (3) residual capacity and damage assessment at member level (i.e., RC beam). The first part of this research focused on damage assessment and the remaining capacity of concrete from a material point of view. It aimed to employ appropriate and reliable durability-based testing and image-detection techniques to quantify deterioration in the mechanical properties of concrete on the basis that stress-induced damage occurred in the microstructural system of the concrete material. To this end, in the first phase, a feasibility study was conducted in which a combination of oxygen permeability, electrical resistivity and porosity tests were assessed to determine if they were robust and reliable enough to reveal damage which occurred in the microstructural system of concrete. The results, in terms of change in permeability, electrical resistivity and porosity features of disk samples taken from the middle third of damaged concrete cylinders (200 mm × 100 mm) monotonically pre-loaded to 50%, 70%, 90% and 95% of the ultimate strength (f′c), showed the permeability test is a reliable tool to identify the degree of damage, due to its high sensitivity to the load-induced microcracking. In parallel, to determine the residual capacity, the companion damaged concrete cylinders already loaded to the same level of compressive strength were reloaded up to failure. Comparing the stress–strain relationship of damaged concrete with intact material, it was also found that the strain capacity of the reloaded pre-damaged concrete cylinders decreases while strength remained virtually unchanged. In the second phase of the first part, a fluorescent microscopy technique was used to assess the damage and develop a correlation between material degradation, by virtue of the geometrical features, and damage to the concrete. To account for the effect of confinement and cyclic loading, in the third phase, the residual capacity and damage assessment of unconfined and GFRP confined concrete cylinders subjected to low-cycle fatigue loading, was investigated. Similar to the first phase, permeability testing technique was used to provide an indirect evaluation of fatigue damage. Finally, in the fourth phase of the first part, the suitability of permeability testing technique to assess damage was evaluated for cored concrete taken from three types of RC members: columns, beams and a beam-column joint. In view of the fact that the composite action of an RC member is highly dependent on the bond between reinforcement and surrounding concrete, understanding the deterioration of the bond in the post-yield range of strain in steel was crucial to assess damage at member level. Therefore, in the second phase of this research, a state-of-the- art distributed fibre optic strain sensor system (DFOSSS) system was used to evaluate bond deterioration in a cantilever RC beam subjected to monotonic lateral loading. The technology allowed the continuous capture of strain, every 2.6 mm along the length, in both reinforcing bars and cover concrete. The strain profile provided a basis by which the slip, axial stress and bond stress distributions were then established. In the third part, the study focused on the damage assessment and residual capacity of seven half-scale RC beams subjected to a constant-amplitude cyclic loading protocol. In the first stage, the structural performances of three specimens under constant-amplitude fatigue at 1%, 2% and 4% chord rotation (drift) were examined. In parallel, the number of cycles to failure, degradation in strength, stiffness and energy dissipation were characterized. In the second stage, four RC beams were subjected to loading up to 70% and 90% of their fatigue life, at 2% and 4% drift, and then monotonically pulled up to failure. To determine the residual flexural capacity, the lateral force–displacement results of pre-damaged specimens were compared with an undamaged specimen subjected to only monotonic loading. The study showed significant losses in strength, deformability, stiffness and energy dissipation capacity. A nonlinear finite element analysis (FEA) using concrete damage plasticity (CDP) model was also conducted in ABAQUS to numerically investigate the behaviour of the tested specimen. The results of the FE simulations indicated a reasonable response compared with the behaviour of the test specimen in terms of force–displacement and cracking pattern. During the Christchurch earthquake it was observed that the loading history has a significant influence on structural responses. While in conventional pseudo-static loading protocol, internal forces can be redistributed along the plastic length: there is little chance for structures undergoing high initial loading amplitude to redistribute pertinent stresses. As a result, in the third phase of this part, the effect of high rate of loading on the behaviour of seismically designed RC beams was investigated. Two half-scale cantilever RC beams were subjected to similar constant-amplitude cyclic loading at 2% and 4% drifts, but at a rate of 500 mm/s. Due to the incapability of conventional measuring techniques, a motion-tracking system was employed for data acquisition with the high-speed tests. The effect of rate of loading on the fatigue life of specimens (i.e., the number of cycles required to failure), secant stiffness, failure mode, cracking pattern, beam elongations and bar fracture surface were analysed. Integrating the results of all parts of this research has resulted in a better understanding of residual capacity and the development of damage at both the material and member level by using a low-cycle fatigue approach.
20160307_0012_1D3-32 Subway is closed (067/366) The Subway shop in the High Street Mall has not operated since lunch time on the 22nd February 2011 when the most damaging of Christchurch and Canterbury's earthquakes struck. I assume the building is still to be demolished. #7119
Active faults capable of generating highly damaging earthquakes may not cause surface rupture (i.e., blind faults) or cause surface ruptures that evade detection due to subsequent burial or erosion by surface processes. Fault populations and earthquake frequency-‐magnitude distributions adhere to power laws, implying that faults too small to cause surface rupture but large enough to cause localized strong ground shaking densely populate continental crust. The rupture of blind, previously undetected faults beneath Christchurch, New Zealand in a suite of earthquakes in 2010 and 2011, including the fatal 22 February 2011 moment magnitude (Mw) 6.2 Christchurch earthquake and other large aftershocks, caused a variety of environmental impacts, including major rockfall, severe liquefaction, and differential surface uplift and subsidence. All of these effects occurred where geologic evidence for penultimate effects of the same nature existed. To what extent could the geologic record have been used to infer the presence of proximal, blind and / or unidentified faults near Christchurch? In this instance, we argue that phenomena induced by high intensity shaking, such as rock fragmentation and rockfall, revealed the presence of proximal active faults in the Christchurch area prior to the recent earthquake sequence. Development of robust earthquake shaking proxy datasets should become a higher scientific priority, particularly in populated regions.
Photograph captioned by Fairfax, "Christchurch business U Fit In have moved from their earthquake damaged store into their co-owners' home and are trading from the lounge and spare room. Co-owner Deborah Lewthwaite (L) and Kendyll Morton work from the lounge room which has become their temporary office".
Lincoln University and CBRE, a commercial real estate service provider, have conducted research to investigate the impacts of the Canterbury earthquake on the commercial office market in Christchurch. The 22 February 2011 Canterbury earthquake had a devastating impact on Christchurch property with significant damage caused to land and buildings. As at January 2012, around 740 buildings have either been demolished or identified to be demolished in central Christchurch. On top of this, around 140 buildings have either been partially demolished or identified to be partially demolished. The broad aims of our research are to (i) examine the nature and extent of the CBD office relocation, (ii) identify the nature of the occupiers, (iii) determine occupier’s perceptions of the future: their location and space needs post the February earthquake, and the likelihood of relocating back to the CBD after the rebuild, and (iv) find out what occupiers see as the future of the CBD, and how they want this to look.
A man representing the South Island stands under an umbrella representing 'hope' to shelter from a bucketload of water representing 'misfortune'. Context - in the last year apart from the usual droughts and floods the South Island has suffered the Pike River Mine disaster on 19 November 2010 in which 29 coal miners were killed, the 7.1 earthquake on 4 September 2010 in which there was a lot of damage but no deaths and now on 22 February 2011 a 6.3 magnitude earthquake which has probably killed more than 200 people (at this point the number is still not known) and caused more severe damage. The reason the apparently lesser magnitude quake caused more destruction is because it was very shallow, was in the middle of the day and struck very close to the centre of the city. Quantity: 1 digital cartoon(s).
The decision on what to do with Christchurch's earthquake damaged redzone is one step closer, with the end of the public consultation period on the plan for the area. Over the past month Christchurch people have been asked to comment on a draft land use plan for the 602 hectares of land. Now those pitching ideas want the authorities to get on with the next step, so they can have some certainty about whether their projects can go ahead.
A review of the week's news: Another earthquake in Christchurch, Prime Minister tight-lipped over what land will be abandoned because of repeated earthquake damage, volcanic ash cloud strands thousands of air passengers, tragic death of teen reignites debate over alcohol reform, problem gambling advocate objects to proposed casino expansion, wool the star at Fieldays and New Zealanders flock to the ballet.
Several thousand people attended the Christchurch red-zoned suburb of Brooklands' swan song gala. About five hundred homes have had to be abandoned because of earthquake damage, meaning Brooklands as it has been known will soon no longer exist.
The damaged (and once iconic Christchurch Cathedral) waits it's fate (repaired or demolish/rebuild) with the Millenium hotel in background.
Shows a shamrock superimposed on the city of Christchurch. It represents the green zone. Context: Probably refers to the zoning review process for those insured residential property owners who wish to query their land zoning. Zoning of flat land in greater Christchurch began in June last year and was completed last month. Over that period 7253 properties were zoned red as unsuitable for residential occupation due to significant earthquake damage; while a further 180,000 properties were zoned green as suitable for residential occupation, some with conditions. (rebuildchristchurch, 15 June 2012) Quantity: 1 digital cartoon(s).
The cartoon is entitled 'seismic upheaval'. Prime Minister John Key and Finance Minister Bill English stand near great seismic cracks in the ground and stare sadly at a huge wallet, 'Bill's boodle', belonging to Bill English. Vast quantities of banknotes spill out of the cash pocket in the wallet which also contains a 'travel card', a 'house card' and an 'expenses card'. The various cards in the wallet refer to expense account embarrassments relating to Bill English. Etched in the ground are the words 'Christchurch quake' and 'South Canterbury Finance'. The cartoon refers to two major events in the Canterbury area in recent times that have incurred huge government costs; these are the collapse of the South Canterbury Finance Company and the earthquake that struck early Saturday morning 4th September. The South Canterbury Finance Company has been taken into receivership by the government which has guaranteed that all 30,000 fortunate high-risk investors will be paid out $1.6b thanks to the taxpayer. Treasury is assuming that the cost of the earthquake will reach $4 billion, including $2 billion worth of estimated damage to private dwellings and their contents, $1 billion of damage to commercial property, and $1 billion worth of damage to public infrastructure. Quantity: 1 digital cartoon(s).