Search

found 77 results

Images, UC QuakeStudies

A photograph of the beginnings of a shed at Agropolis. Agropolis is an urban farm on the corner of High Street and Tuam Street. Organic waste from inner-city hospitality businesses is composted and used to grow food. Agropolis was the venue for several events throughout FESTA 2013.

Images, UC QuakeStudies

A photograph of the beginnings of a shed at Agropolis. Agropolis is an urban farm on the corner of High Street and Tuam Street. Organic waste from inner-city hospitality businesses is composted and used to grow food. Agropolis was the venue for several events throughout FESTA 2013.

Images, UC QuakeStudies

A photograph of Jessica Halliday of FESTA at the public launch event for Agropolis. The launch was part of FESTA 2013. Agropolis is an urban farm on the corner of High Street and Tuam Street. Organic waste from inner-city hospitality businesses is composted and used to grow food.

Images, UC QuakeStudies

A photograph of Jessica Halliday of FESTA giving a speech at the public launch of Agropolis. The launch was part of FESTA 2013. Agropolis is an urban farm on the corner of High Street and Tuam Street. Organic waste from inner-city hospitality businesses is composted and used to grow food.

Images, UC QuakeStudies

A photograph of plants in a raised garden bed at the public launch event for Agropolis, which was part of FESTA 2013. Agropolis is an urban farm on the corner of High Street and Tuam Street. Organic waste from inner-city hospitality businesses is composted and used to grow food.

Images, UC QuakeStudies

A photograph of a woman with soil in her hands, before the opening of Agropolis, an urban farm on the corner of High Street and Tuam Street. Organic waste from inner-city hospitality businesses is composted and used to grow food. Agropolis was the venue for several events throughout FESTA 2013.

Images, UC QuakeStudies

A photograph of Jessica Halliday of FESTA giving a speech at the public launch of Agropolis. The launch was part of FESTA 2013. Agropolis is an urban farm on the corner of High Street and Tuam Street. Organic waste from inner-city hospitality businesses is composted and used to grow food.

Images, UC QuakeStudies

A photograph of fresh bread, pickles and spreads on a table at Agropolis, for the public launch event as part of FESTA 2013. Agropolis is an urban farm on the corner of High Street and Tuam Street. Organic waste from inner-city hospitality businesses is composted and used to grow food.

Images, UC QuakeStudies

A photograph of a City Care truck delivering mulch to Agropolis before the public launch event. The launch was part of FESTA 2013. Agropolis is an urban farm on the corner of High Street and Tuam Street. Organic waste from inner-city hospitality businesses is composted and used to grow food.

Images, UC QuakeStudies

A photograph of fresh bread, pickles and spreads on a table at Agropolis, for the public launch event as part of FESTA 2013. Agropolis is an urban farm on the corner of High Street and Tuam Street. Organic waste from inner-city hospitality businesses is composted and used to grow food.

Images, UC QuakeStudies

A photograph of a freshly-made spread in a jar on a table at Agropolis, for the public launch event as part of FETSA 2013. Agropolis is an urban farm on the corner of High Street and Tuam Street. Organic waste from inner-city hospitality businesses is composted and used to grow food.

Images, UC QuakeStudies

A photograph of people jumping in a pile of soil that has been placed on a white sheet, as part of the launch event of Agropolis during FESTA 2013. Agropolis is an urban farm on the corner of High Street and Tuam Street. Organic waste from inner-city hospitality businesses is composted and used to grow food.

Images, UC QuakeStudies

A photograph of people jumping in a pile of soil that has been placed on a white sheet, as part of the launch event of Agropolis during FESTA 2013. Agropolis is an urban farm on the corner of High Street and Tuam Street. Organic waste from inner-city hospitality businesses is composted and used to grow food.

Images, UC QuakeStudies

A photograph of people jumping in a pile of soil that has been placed on a white sheet, as part of the launch event of Agropolis during FESTA 2013. Agropolis is an urban farm on the corner of High Street and Tuam Street. Organic waste from inner-city hospitality businesses is composted and used to grow food.

Images, UC QuakeStudies

A photograph of people jumping in a pile of soil that has been placed on a white sheet, as part of the launch event of Agropolis during FESTA 2013. Agropolis is an urban farm on the corner of High Street and Tuam Street. Organic waste from inner-city hospitality businesses is composted and used to grow food.

Images, UC QuakeStudies

A mural on the exposed wall of a building on Peterborough Street. This was a joint project between Gap Filler and the Flying Cup Cafe. The mural is a beach scene with a quote from Anne Frank, reading, "Isn't it wonderful that nobody need waste a single moment to improve the world", and incorporates pre-existing street art and posters.

Research papers, The University of Auckland Library

The research presented in this thesis investigated the environmental impacts of structural design decisions across the life of buildings located in seismic regions. In particular, the impacts of expected earthquake damage were incorporated into a traditional life cycle assessment (LCA) using a probabilistic method, and links between sustainable and resilient design were established for a range of case-study buildings designed for different seismic performance objectives. These links were quantified using a metric herein referred to as the seismic carbon risk, which represents the expected environmental impacts and resource use indicators associated with earthquake damage during buildings’ life. The research was broken into three distinct parts: (1) a city-level evaluation of the environmental impacts of demolitions following the 2010/2011 Canterbury earthquake sequence in New Zealand, (2) the development of a probabilistic framework to incorporate earthquake damage into LCA, and (3) using case-study buildings to establish links between sustainable and resilient design. The first phase of the research focused on the environmental impacts of demolitions in Christchurch, New Zealand following the 2010/2011 Canterbury Earthquake Sequence. This large case study was used to investigate the environmental impact of the demolition of concrete buildings considering the embodied carbon and waste stream distribution. The embodied carbon was considered here as kilograms of CO2 equivalent that occurs on production, construction, and waste management stage. The results clearly demonstrated the significant environmental impacts that can result from moderate and large earthquakes in urban areas, and the importance of including environmental considerations when making post-earthquake demolition decisions. The next phase of the work introduced a framework for incorporating the impacts of expected earthquake damage based on a probabilistic approach into traditional LCA to allow for a comparison of seismic design decisions using a carbon lens. Here, in addition to initial construction impacts, the seismic carbon risk was quantified, including the impacts of seismic repair activities and total loss scenarios assuming reconstruction in case of non-reparability. A process-based LCA was performed to obtain the environmental consequence functions associated with structural and non-structural repair activities for multiple environmental indicators. In the final phase of the work, multiple case-study buildings were used to investigate the seismic consequences of different structural design decisions for buildings in seismic regions. Here, two case-study buildings were designed to multiple performance objectives, and the upfront carbon costs, and well as the seismic carbon risk across the building life were compared. The buildings were evaluated using the framework established in phase 2, and the results demonstrated that the seismic carbon risk can significantly be reduced with only minimal changes to the upfront carbon for buildings designed for a higher base shear or with seismic protective systems. This provided valuable insight into the links between resilient and sustainable design decisions. Finally, the results and observations from the work across the three phases of research described above were used to inform a discussion on important assumptions and topics that need to be considered when quantifying the environmental impacts of earthquake damage on buildings. These include: selection of a non-repairable threshold (e.g. a value beyond which a building would be demolished rather than repaired), the time value of carbon (e.g. when in the building life the carbon is released), the changing carbon intensity of structural materials over time, and the consideration of deterministic vs. probabilistic results. Each of these topics was explored in some detail to provide a clear pathway for future work in this area.