Storm winds cause dust misery in Christchurch
Audio, Radio New Zealand
The wind is picking up in Christchurch, causing concern about dust storms being blown up from earthquake debris and silt.
The wind is picking up in Christchurch, causing concern about dust storms being blown up from earthquake debris and silt.
One woman says to another as they both struggle to keep their feet against a howling gale 'Things are looking up! We're talking about the weather instead of earthquakes!' Context: It is more than a year after the first earthquake struck in Canterbury on September 3 2011. The city is still struggling to deal with the damage and with the psychological aftermath for many people. Quantity: 1 digital cartoon(s).
From tomorrow, the Government is winding down the subsidy that allows earthquake-damaged businesses in Canterbury to keep paying their workers' wages.
A review of the week's news including: Last frantic days of Election '11, a High Court judge refuses to rule on the "teacup tape", 2,000 attend Pike River Mine ceremony on first anniversary of explosions, former Pike River employee tells Royal Commission he warned of explosion "at any time", record numbers of New Zealanders heading to Australia, operation to remove containers from Rena battles high winds, Christchurch people to walk through city centre for first time since February's earthquake and Takamore case heads back to High Court.
The aftermath of three earthquakes has forced Christchurch to re-plan and rebuild. New perspectives of a sustainable city have arisen granting Christchurch the chance of becoming an example to the world. This work is centred on bioclimatic landscape design as a base for greening strategies. It deals with strategic landscape design adapted to a specific climate, from a user’s perspective. The investigation will be applied to Christchurch’s urban centres, assessing cultural adaptability to the local climate and implications for landscape design. Climatic data shows that humidity is not a local problem. However, the wind is the determinant. In Christchurch the solar radiation and the prevailing winds are the most important microclimatic variables, the latter intensifying the loss of surface heat, decreasing the radiant temperature and affecting thermal sensation. The research objective is to explore design parameters at the street-scale and identify ways to maximise thermal comfort in outdoor spaces through design-based strategies. The investigation will apply methods of participant observation, depth interviews, climatic data collection and design experimentation based on thermal comfort models and computer simulation tools. Case study sites chosen for investigation are places with current levels of activity that may be anticipated in the rebuild of the central city. The research will have two main outcomes: improved understanding of local urban culture adaptation to microclimate, and a demonstration of how design can enhance adaption. These outcomes will inform designers and city managers about good design practices and strategies that can be used to ensure a long term liveable city.
Someone wearing a Canterbury black and red rugby jersey holds onto two corners of a New Zealand flag which blows in the wind. There is no text in the cartoon. Context - On 22 February 2011 at 12:51 pm (NZDT), Christchurch experienced a major magnitude 6.3 earthquake, which resulted in severe damage and many casualties. A National State of Emergency has been declared. This followed on from an original magnitude 7.1 earthquake on 4 September 2010 which did far less damage and in which no-one died. Both colour and black and white versions of this cartoon are available Quantity: 2 digital cartoon(s).
A cheerful old woman sits with a cup of tea on her sofa watching television with an enormous boulder beside her. She says 'Big and solid it reminded me of my late husband but then I realized that in two weeks it hasn't once broken wind, belched or called for a beer, or gone and changed the channel and I think I'm in love!' The little Evans man says 'Stone me!' Context - The Christchurch earthquake of 22 February 2011. Some people remain cheerful and optimistic in spite of dreadfully difficult conditions. Colour and black and white versions available Quantity: 2 digital cartoon(s).
Cartoons about political and social issues in New Zealand and overseas. The cartoon has the words 'Tsunami Warning cancelled' in the centre. Above are the words 'The end is nigh... insurance running out! No more cover!' Below the word 'cancelled' are the words 'We have reinsurance!' Context - Civil Defence has cancelled a tsunami warning after a 7.8 magnitude earthquake struck off the Kermadec Islands this morning (7 July 2011) The tsunami image is used to illustrate the problems that could arise from lack of insurance in Christchurch. When their policies run out on 30 June Earthquake-hit Christchurch and Waimakariri councils are in danger of having no property insurance because as the CEO of Civic Assurance, which insures most councils, says, 'the company cannot buy reinsurance'. There was also a potential problem for home-owners when AMI Insurance, the largest insurer of homes in Christchurch, was threatening insolvency. However, AMI has announced that it has re-insurance cover for earthquakes and other natural disasters from tomorrow (1 July 2011) for the next year. The Government feared AMI Insurance's directors would wind up the company affecting a huge section of New Zealand's insurance market and derail the reconstruction of Christchurch, official documents confirm. AMI said it had doubled its cover for the year to June 2012 after three large quakes in the year to June 2011. (Stuff 30 June 2011) Quantity: 1 digital cartoon(s).
Timber has experienced renewed interests as a sustainable building material in recent times. Although traditionally it has been the prime choice for residential construction in New Zealand and some other parts of the world, its use can be increased significantly in the future through a wider range of applications, particularly when adopting engineered wood material, Research has been started on the development of innovative solutions for multi-storey non-residential timber buildings in recent years and this study is part of that initiative. Application of timber in commercial and office spaces posed some challenges with requirements of large column-free spaces. The current construction practice with timber is not properly suited for structures with the aforementioned required characteristics and new type of structures has to be developed for this type of applications. Any new structural system has to have adequate capacity for carry the gravity and lateral loads due to occupancy and the environmental effects. Along with wind loading, one of the major sources of lateral loads is earthquakes. New Zealand, being located in a seismically active region, has significant risk of earthquake hazard specially in the central region of the country and any structure has be designed for the seismic loading appropriate for the locality. There have been some significant developments in precast concrete in terms of solutions for earthquake resistant structures in the last decade. The “Hybrid” concept combining post-tensioning and energy dissipating elements with structural members has been introduced in the late 1990s by the precast concrete industry to achieve moment-resistant connections based on dry jointed ductile connections. Recent research at the University of Canterbury has shown that the concept can be adopted for timber for similar applications. Hybrid timber frames using post-tensioned beams and dissipaters have the potential to allow longer spans and smaller cross sections than other forms of solid timber frames. Buildings with post-tensioned frames and walls can have larger column-free spaces which is a particular advantage for non-residential applications. While other researchers are focusing on whole structural systems, this research concentrated on the analysis and design of individual members and connections between members or between member and foundation. This thesis extends existing knowledge on the seismic behaviour and response of post-tensioned single walls, columns under uni-direction loads and small scale beam-column joint connections into the response and design of post-tensioned coupled walls, columns under bi-directional loading and full-scale beam-column joints, as well as to generate further insight into practical applications of the design concept for subassemblies. Extensive experimental investigation of walls, column and beam-column joints provided valuable confirmation of the satisfactory performance of these systems. In general, they all exhibited almost complete re-centering capacity and significant energy dissipation, without resulting into structural damage. The different configurations tested also demonstrated the flexibility in design and possibilities for applications in practical structures. Based on the experimental results, numerical models were developed and refined from previous literature in precast concrete jointed ductile connections to predict the behaviour of post-tensioned timber subassemblies. The calibrated models also suggest the values of relevant parameters for applications in further analysis and design. Section analyses involving those parameters are performed to develop procedures to calculate moment capacities of the subassemblies. The typical features and geometric configurations the different types of subassemblies are similar with the only major difference in the connection interfaces. With adoption of appropriate values representing the corresponding connection interface and incorporation of the details of geometry and configurations, moment capacities of all the subassemblies can be calculated with the same scheme. That is found to be true for both post-tensioned-only and hybrid specimens and also applied for both uni-directional and bi-directional loading. The common section analysis and moment capacity calculation procedure is applied in the general design approach for subassemblies.