Search

found 10 results

Research Papers, Lincoln University

To the casual observer, community gardens may look like places where people just come to grow fruit and vegetables. Through digging beneath surface appearances, however, the research literature suggests that there is more to the creation of and participation in community gardens than that which is immediately apparent. The overall aim of this research was to explore and interpret the meaning of community gardens in terms of the sought and experienced well-being of the individuals who participate, and their associated communities. This research was undertaken in the Christchurch/Selwyn district, in the aftermath of the Christchurch earthquakes of 2010-2011. This research utilised the technique of photo-elicitation interviews to study the meanings attributed to community gardening, in the post-earthquake environment. Five gardens were investigated. Results show that a range of meanings, and well-being outcomes are experienced through a combination of physical, educational, aesthetic appreciation, contemplative, creative and social connections within the garden and within the overall context of nature. Significantly, within the post-earthquake environment, the community gardens can offer participants the opportunity to appreciate life and what it means for them.

Audio, Radio New Zealand

Despite low international coal prices, the financially troubled State-owned coal company, Solid Energy, says its time to mine for more coal. A referendum on self-rule is held in eastern Ukraine overnight, we'll have the latest on the turnout and Prime Minister, John Key, is denying money is being held back from the Canterbury earthquake recovery to make the Government's books look better.

Research papers, University of Canterbury Library

We present the initial findings from a study of adaptive resilience of lifelines organisations providing essential infrastructure services, in Christchurch, New Zealand following the earthquakes of 2010-2011. Qualitative empirical data was collected from 200 individuals in 11 organisations. Analysis using a grounded theory method identified four major factors that aid organisational response, recovery and renewal following major disruptive events. Our data suggest that quality of top and middle-level leadership, quality of external linkages, level of internal collaboration, ability to learn from experience, and staff well-being and engagement influence adaptive resilience. Our data also suggest that adaptive resilience is a process or capacity, not an outcome and that it is contextual. Post-disaster capacity/resources and post-disaster environment influence the nature of adaptive resilience.

Research Papers, Lincoln University

Following the 2010 and 2011 earthquakes Christchurch is undergoing extensive development on the periphery of the city. This has been driven in part by the large numbers of people who have lost their homes. Prior to the earthquakes, Christchurch was already experiencing placeless subdivisions and now these are being rolled out rapidly thanks to the efficiency of a formula that has been embraced by the Council, developers and the public alike. However, sprawling subdivisions have a number of issues including inefficient land use, limited housing types, high dependence on motor vehicles and low levels of resilience and no sense of place. Sense of place is of particular interest due to its glaring absence from new subdivisions and its growing importance in the literature. Research shows that sense of place has benefits to our feeling of belonging, well-being, and self-identity, particularly following a disaster. It improves the resilience and sustainability of our living environment and fosters a connection to the landscape thereby making us better placed to respond to future changes. Despite these benefits, current planning models such as new urbanism and transit-oriented design tend to give sense of place a low priority and as a result it can get lost. Given these issues, the focus of this research is “can landscape driven sense of place drive subdivision design without compromising on other urban planning criteria to produce subdivisions that address the issues of sprawl, as well as achieving the benefits associated with a strong sense of place that can improve our overall quality of life?” Answering this question required a thorough review of current urban planning and sense of place literature. This was used to critique existing subdivisions to gain a thorough understanding of the issues. The outcomes of this led to extensive design exploration which showed that, not only is it possible to design a subdivision with sense of place as the key driver but by doing this, the other urban planning criteria become easier to achieve.

Research papers, The University of Auckland Library

The Evaluating Maternity Units (EMU) study is a mixed method project involving a prospective cohort study, surveys (two postnatal questionnaires) and focus groups. It is an Australasian project funded by the Australian Health and Medical Research Council. Its primary aim was to compare the birth outcomes of two groups of well women – one group who planned to give birth at a primary maternity unit, and a second group who planned to give birth at a tertiary hospital. The secondary aim was to learn about women’s views and experiences regarding their birthplace decision-making, transfer, maternity care and experiences, and any other issues they raised. The New Zealand arm of the study was carried out in Christchurch, and was seriously affected by the earthquakes, halting recruitment at 702 participants. Comprehensive details were collected from both midwives and women regarding antenatal and early labour changes of birthplace plans and perinatal transfers from the primary units to the tertiary hospital. Women were asked about how they felt about plan changes and transfers in the first survey, and they were discussed in some focus groups. The transfer findings are still being analysed and will be presented. This study is set within the local maternity context, is recent, relevant and robust. It provides midwives with contemporary information about transfers from New Zealand primary maternity units and women’s views and experiences. It may help inform the conversations midwives have with each other, and with women and their families/whānau, regarding the choices of birthplace for well childbearing women.

Research papers, University of Canterbury Library

This paper presents the ongoing development of a new 3D seismic velocity model of Canterbury, New Zealand. The model explicitly represents the Canterbury sedimentary basin, and other significant geologic horizons, which are expected to have important implications on observed ground motions. The model utilizes numerous sources of data, including 3D regional tomography with a variable-depth inferred Moho, seismic reflection survey lines, geotechnical boreholes and well logs, spectral analysis of surface waves, and CPT logs which provide velocity constraints over their respective ranges of application. The model provides P- and S-wave velocity and density (i.e. Vp, Vs and p) over a grid of input points, and is presently being utilized in broadband ground motion simulations of the 2010-2011 Canterbury earthquakes. Comparison of simulated ground motions with those observed in the 2010-2011 Canterbury earthquakes will help provide a better understanding of the salient physical processes which characterized the unique set of strong ground motions recorded in this sequence of earthquake events.

Research papers, University of Canterbury Library

This paper presents the preliminary findings of a study on the resilience and recovery of organisations following the Darfield earthquake in New Zealand on 4 September 2010. Sampling included organisations proximal and distal to the fault trace, organisations located within central business districts, and organisations from seven diverse industry sectors. The research captured information on the challenges to, the impacts on, and the reflections of the organisations in the first months of recovery. Organisations in central business districts and in the hospitality sector were most likely to close while organisations that had perishable stock and livestock were more heavily reliant on critical services. Staff well-being, cash flow, and customer loss were major concerns for organisations across all sectors. For all organisations, the most helpful factors in mitigating the effects of the earthquake to be their relationship with staff, the design and type of buildings, and critical service continuity or swift reinstatement of services.

Research papers, University of Canterbury Library

Structural engineering is facing an extraordinarily challenging era. These challenges are driven by the increasing expectations of modern society to provide low-cost, architecturally appealing structures which can withstand large earthquakes. However, being able to avoid collapse in a large earthquake is no longer enough. A building must now be able to withstand a major seismic event with negligible damage so that it is immediately occupiable following such an event. As recent earthquakes have shown, the economic consequences of not achieving this level of performance are not acceptable. Technological solutions for low-damage structural systems are emerging. However, the goal of developing a low-damage building requires improving the performance of both the structural skeleton and the non-structural components. These non-structural components include items such as the claddings, partitions, ceilings and contents. Previous research has shown that damage to such items contributes a disproportionate amount to the overall economic losses in an earthquake. One such non-structural element that has a history of poor performance is the external cladding system, and this forms the focus of this research. Cladding systems are invariably complicated and provide a number of architectural functions. Therefore, it is important than when seeking to improve their seismic performance that these functions are not neglected. The seismic vulnerability of cladding systems are determined in this research through a desktop background study, literature review, and postearthquake reconnaissance survey of their performance in the 2010 – 2011 Canterbury earthquake sequence. This study identified that precast concrete claddings present a significant life-safety risk to pedestrians, and that the effect they have upon the primary structure is not well understood. The main objective of this research is consequently to better understand the performance of precast concrete cladding systems in earthquakes. This is achieved through an experimental campaign and numerical modelling of a range of precast concrete cladding systems. The experimental campaign consists of uni-directional, quasi static cyclic earthquake simulation on a test frame which represents a single-storey, single-bay portion of a reinforced concrete building. The test frame is clad with various precast concrete cladding panel configurations. A major focus is placed upon the influence the connection between the cladding panel and structural frame has upon seismic performance. A combination of experimental component testing, finite element modelling and analytical derivation is used to develop cladding models of the cladding systems investigated. The cyclic responses of the models are compared with the experimental data to evaluate their accuracy and validity. The comparison shows that the cladding models developed provide an excellent representation of real-world cladding behaviour. The cladding models are subsequently applied to a ten-storey case-study building. The expected seismic performance is examined with and without the cladding taken into consideration. The numerical analyses of the case-study building include modal analyses, nonlinear adaptive pushover analyses, and non-linear dynamic seismic response (time history) analyses to different levels of seismic hazard. The clad frame models are compared to the bare frame model to investigate the effect the cladding has upon the structural behaviour. Both the structural performance and cladding performance are also assessed using qualitative damage states. The results show a poor performance of precast concrete cladding systems is expected when traditional connection typologies are used. This result confirms the misalignment of structural and cladding damage observed in recent earthquake events. Consequently, this research explores the potential of an innovative cladding connection. The outcomes from this research shows that the innovative cladding connection proposed here is able to achieve low-damage performance whilst also being cost comparable to a traditional cladding connection. It is also theoretically possible that the connection can provide a positive value to the seismic performance of the structure by adding addition strength, stiffness and damping. Finally, the losses associated with both the traditional and innovative cladding systems are compared in terms of tangible outcomes, namely: repair costs, repair time and casualties. The results confirm that the use of innovative cladding technology can substantially reduce the overall losses that result from cladding damage.

Research papers, Victoria University of Wellington

“One of the most basic and fundamental questions in urban master planning and building regulations is ‘how to secure common access to sun, light and fresh air?” (Stromann-Andersen & Sattrup, 2011).  Daylighting and natural ventilation can have significant benefits in office buildings. Both of these ‘passive’ strategies have been found to reduce artificial lighting and air-conditioning energy consumption by as much as 80% (Ministry for the Environment, 2008); (Brager, et al., 2007). Access to daylight and fresh air can also be credited with improved occupant comfort and health, which can lead to a reduction of employee absenteeism and an increase of productivity (Sustainability Victoria, 2008).  In the rebuild of Christchurch central city, following the earthquakes of 2010 and 2011, Cantabrians have expressed a desire for a low-rise, sustainable city, with open spaces and high performance buildings (Christchurch City Council, 2011). With over 80% of the central city being demolished, a unique opportunity to readdress urban form and create a city that provides all buildings with access to daylight and fresh air exists.  But a major barrier to wide-spread adoption of passive buildings in New Zealand is their dependence on void space to deliver daylight and fresh air – void space which could otherwise be valuable built floor space. Currently, urban planning regulations in Christchurch prioritize density, allowing and even encouraging low performance compact buildings.  Considering this issue of density, this thesis aimed to determine which urban form and building design changes would have the greatest effect on building performance in Central City Christchurch.  The research proposed and parametrically tested modifications of the current compact urban form model, as well as passive building design elements. Proposed changes were assessed in three areas: energy consumption, indoor comfort and density. Three computer programs were used: EnergyPlus was the primary tool, simulating energy consumption and thermal comfort. Radiance/Daysim was used to provide robust daylighting calculations and analysis. UrbaWind enabled detailed consideration of the urban wind environment for reliable natural ventilation predictions.  Results found that, through a porous urban form and utilization of daylight and fresh air via simple windows, energy consumption could be reduced as much as 50% in buildings. With automatic modulation of windows and lighting, thermal and visual comfort could be maintained naturally for the majority of the occupied year. Separation of buildings by as little as 2m enabled significant energy improvements while having only minimal impact on individual property and city densities.  Findings indicated that with minor alterations to current urban planning laws, all buildings could have common access to daylight and fresh air, enabling them to operate naturally, increasing energy efficiency and resilience.

Research papers, University of Canterbury Library

Seismically vulnerable buildings constitute a major problem for the safety of human beings. In many parts of the world, reinforced concrete (RC) frame buildings designed and constructed with substandard detailing, no consideration of capacity design principles, and improper or no inclusion of the seismic actions, have been identified. Amongst those vulnerable building, one particular typology representative of the construction practice of the years previous to the 1970’s, that most likely represents the worst case scenario, has been widely investigated in the past. The deficiencies of that building typology are related to non-ductile detailing in beam column joints such as the use of plain round bars, the lack of stirrups inside the joint around the longitudinal reinforcement of the column, the use of 180° end hooks in the beams, the use of lap splices in potential ‘plastic hinge’ regions, and substandard quality of the materials. That type of detailing and the lack of a capacity design philosophy create a very fragile fuse in the structure where brittle inelastic behaviour is expected to occur, which is the panel zone region of exterior beam column joints. The non-ductile typology described above was extensively investigated at the University of Canterbury in the context of the project ‘Retrofit Solutions for New Zealand Multi-Storey Buildings’ (2004-2011), founded by the ‘Foundation for Research, Science and Technology’ Tūāpapa Rangahau Pūtaiao. The experimental campaign prior to the research carried out by the author consisted of quasi-static tests of beam column joint subassemblies subjected to lateral loading regime, with constant and varying axial load in the column. Most of those specimens were representative of a plane 2D frame (knee joint), while others represented a portion of a space 3D frame (corner joints), and only few of them had a floor slab, transverse beams, and lap splices. Using those experiments, several feasible, cost-effective, and non-invasive retrofit techniques were developed, improved, and refined. Nevertheless, the slow motion nature of those experiments did not take into account the dynamical component inherent to earthquake related problems. Amongst the set of techniques investigated, the use of FRP layers for strengthening beam column joints is of particular interest due to its versatility and the momentum that its use has gained in the current state of the practice. That particular retrofit technique was previously used to develop a strengthening scheme suitable for plane 2D and space 3D corner beam column joints, but lacking of floor slabs. In addition, a similar scheme was not developed for exterior joints of internal frames, referred here as ‘cruciform’. In this research a 2/5 scale RC frame model building comprising of two frames in parallel (external and internal) joined together by means of floor slabs and transverse beams, with non-ductile characteristics identical to those of the specimens investigated previously by others, and also including lap splices, was developed. In order to investigate the dynamic response of that building, a series of shake table tests with different ground motions were performed. After the first series of tests, the specimen was modified by connecting the spliced reinforcement in the columns in order to capture a different failure mode. Ground motions recorded during seismic events that occurred during the initial period of the experimental campaign (2010) were used in the subsequent experiments. The hierarchy of strengths and sequence of events in the panel zone region were evaluated in an extended version of the bending moment-axial load (M-N) performance domain developed by others. That extension was required due to the asymmetry in the beam cross section introduced by the floor slab. In addition, the effect of the torsion resistance provided by the spandrel (transverse beam) was included. In order to upgrade the brittle and unstable performance of the as-built/repaired specimen, a practical and suitable ad-hoc FRP retrofit intervention was developed, following a partial retrofit strategy that aimed to strengthen exterior beam column joints only (corner and cruciform). The ability of the new FRP scheme to revert the sequence of events in the panel zone region was evaluated using the extended version of the M-N performance domain as well as the guidelines for strengthening plane joints developed by others. Weakening of the floor slab in a novel configuration was also incorporated with the purpose of reducing the flexural capacity of the beam under negative bending moment (slab in tension), enabling the damage relocation from the joint into the beam. The efficacy of the developed retrofit intervention in upgrading the seismic performance of the as-built specimen was investigated using shake table tests with the input motions used in the experiments of the as-built/repaired specimen. Numerical work aimed to predict the response of the model building during the most relevant shake table tests was carried out. By using a simple numerical model with concentrated plasticity elements constructed in Ruaumoko2D, the results of blind and post-experimental predictions of the response of the specimen were addressed. Differences in the predicted response of the building using the nominal and the actual recorded motions of the shake table were investigated. The dependence of the accuracy of the numerical predictions on the assumed values of the parameters that control the hysteresis rules of key structural members was reviewed. During the execution of the experimental campaign part of this thesis, two major earthquakes affected the central part of Chile (27 of February 2010 Maule earthquake) and the Canterbury region in New Zealand (22 February 2011 Canterbury earthquake), respectively. As the author had the opportunity to experience those events and investigate their consequences in structures, the observations related to non-ductile detailing and drawbacks in the state of the practice related to reinforced concrete walls was also addressed in this research, resulting in preliminary recommendations for the refinement of current seismic code provisions and assessment guidelines. The investigations of the ground motions recorded during those and other earthquakes were used to review the procedures related to the input motions used for nonlinear dynamic analysis of buildings as required by most of the current code provisions. Inelastic displacement spectra were constructed using ground motions recorded during the earthquakes mentioned above, in order to investigate the adequacy of modification factors used to obtain reduced design spectra from elastic counterparts. Finally a simplified assessment procedure for RC walls that incorporates capacity compatible spectral demands is proposed.