Canterbury mayors say their ratepayers are already paying for earthquake recovery, roading, water and storm water infrastructure, so a shiny new Christchurch stadium is way down the priority list.
Introduction This poster presents the inferred initial performance and recovery of the water supply network of Christchurch following the 22 February 2011 Mw 6.2 earthquake. Results are presented in a geospatial and temporal fashion. This work strengthens the current understanding of the restoration of such a system after a disaster and quantifies the losses caused by this earthquake in respect with the Christchurch community. Figure 1 presents the topology of the water supply network as well as the spatial distribution of the buildings and their use.
Construction delays and cost over-runs are prolonging the earthquake risks facing patients and staff at Christchurch hospital. Six major hospital buildings at the central city site have been listed as earthquake prone since May, but there is no safer space to shift patients into. Christchurch Hospital boss David Meates pron; Mates says the hospital is still basically a construction site. One earthquake prone building has roof tanks containing 75 tonnes of water. Mr Meates told RNZ reporter Phil Pennington removing the water from the tanks in the meantime is not an option.
Earthquake-triggered soil liquefaction caused extensive damage and heavy economic losses in Christchurch during the 2010-2011 Canterbury earthquakes. The most severe manifestations of liquefaction were associated with the presence of natural deposits of clean sands and silty sands of fluvial origin. However, liquefaction resistance of fines-containing sands is commonly inferred from empirical relationships based on clean sands (i.e. sands with less than 5% fines). Hence, existing evaluation methods have poor accuracy when applied to silty sands. Also, existing methods do not quantify appropriately the influence on liquefaction resistance of soil fabric and structure, which are unique to a specific depositional environment. This study looks at the influence of fines content, soil fabric (i.e. arrangement of soil particles) and structure (e.g. layering, segregation) on the undrained cyclic behaviour and liquefaction resistance of fines-containing sandy soils from Christchurch using Direct Simple Shear (DSS) tests on soil specimens reconstituted in the laboratory with the water sedimentation technique. The poster describes experimental procedures and presents early test results on two sands retrieved at two different sites in Christchurch.
Land cover change information in urban areas supports decision makers in dealing with public policy planning and resource management. Remote sensing has been demonstrated as an efficient and accurate way to monitor land cover change over large extents. The Canterbury Earthquake Sequence (CES) caused massive damage in Christchurch, New Zealand and resulted in significant land cover change over a short time period. This study combined two types of remote sensing data, aerial imagery (RGB) and LiDAR, as the basis for quantifying land cover change in Christchurch between 2011 – 2015, a period corresponding to the five years immediately following the 22 February 2011 earthquake, which was part of the CES. An object based image analysis (OBIA) approach was adopted to classify the aerial imagery and LiDAR data into seven land cover types (bare land, building, grass, shadow, tree and water). The OBIA approach consisted of two steps, image segmentation and object classification. For the first step, this study used multi-level segmentation to better segment objects. For the second step, the random forest (RF) classifier was used to assign a land cover type to each object defined by the segmentation. Overall classification accuracies for 2011 and 2015 were 94.0% and 94.32%, respectively. Based on the classification result, land cover changes between 2011 and 2015 were then analysed. Significant increases were found in road and tree cover, while the land cover types that decreased were bare land, grass, roof, water. To better understand the reasons for those changes, land cover transitions were calculated. Canopy growth, seasonal differences and forest plantation establishment were the main reasons for tree cover increase. Redevelopment after the earthquake was the main reason for road area growth. By comparing the spatial distribution of these transitions, this study also identified Halswell and Wigram as the fastest developing suburbs in Christchurch. These results provided quantitative information for the effects of CES, with respect to land cover change. They allow for a better understanding for the current land cover status of Christchurch. Among those land cover changes, the significant increase in tree cover aroused particularly interest as urban forests benefit citizens via ecosystem services, including health, social, economic, and environmental benefits. Therefore, this study firstly calculated the percentages of tree cover in Christchurch’s fifteen wards in order to provide a general idea of tree cover change in the city extent. Following this, an automatic individual tree detection and crown delineation (ITCD) was undertaken to determine the feasibility of automated tree counting. The accuracies of the proposed approach ranged between 56.47% and 92.11% in thirty different sample plots, with an overall accuracy of 75.60%. Such varied accuracies were later found to be caused by the fixed tree detection window size and misclassifications from the land cover classification that affected the boundary of the CHM. Due to the large variability in accuracy, tree counting was not undertaken city-wide for both time periods. However, directions for further study for ITCD in Christchurch could be exploring ITCD approaches with variable window size or optimizing the classification approach to focus more on producing highly accurate CHMs.
Hon PAULA BENNETT to the Prime Minister: Does she stand by all her statements?
Dr DEBORAH RUSSELL to the Minister of Finance: What does the Treasury’s 2018 Investment Statement show about the state of the Government’s balance sheet?
Hon AMY ADAMS to the Minister of Finance: How much capital expenditure is this Government forecast to spend in the period 2018-2022 compared to the previous Government over these same years, and how much of the difference is funded by an increase in debt?
Hon PAUL GOLDSMITH to the Minister for Economic Development: Does this Government have a broad economic development strategy; if so, what is it?
Dr DUNCAN WEBB to the Minister responsible for the Earthquake Commission: What announcements has the Government made about changes to how the Earthquake Commission operates?
Hon DAVID BENNETT to the Minister of Corrections: Does he stand by his statement on the Marae programme that “the problem right now is that corrections doesn’t have any flexibility…we’re in a real bind”?
Hon SCOTT SIMPSON to the Associate Minister for the Environment: Does she agree with the statements in the Annual Report of the Environmental Protection Authority, “we have our share of science deniers, who oppose fluoride, 1080, vaccinations, glyphosate, genetic modification, and much more” and “our Chief Scientist is prominent in emphasising the evidence, data, and science that underpins EPA decision making”; if so, why?
JENNY MARCROFT to the Minister for Regional Economic Development: What recent announcements has he made pertaining to the Provincial Growth Fund?
SIMEON BROWN to the Minister of Justice: Should maximum legislated sentences reflect the seriousness of the crime committed?
Hon NICKY WAGNER to the Minister for Greater Christchurch Regeneration: Does she stand by all her answers to written questions?
ANGIE WARREN-CLARK to the Minister for the Environment: What does he think New Zealanders have to celebrate on World Water Day?
MELISSA LEE to the Minister of Broadcasting, Communications and Digital Media: Does she stand by all her Government’s policies and actions in the Broadcasting, Communications and Digital Media portfolio?
Geospatial liquefaction models aim to predict liquefaction using data that is free and readily-available. This data includes (i) common ground-motion intensity measures; and (ii) geospatial parameters (e.g., among many, distance to rivers, distance to coast, and Vs30 estimated from topography) which are used to infer characteristics of the subsurface without in-situ testing. Since their recent inception, such models have been used to predict geohazard impacts throughout New Zealand (e.g., in conjunction with regional ground-motion simulations). While past studies have demonstrated that geospatial liquefaction-models show great promise, the resolution and accuracy of the geospatial data underlying these models is notably poor. As an example, mapped rivers and coastlines often plot hundreds of meters from their actual locations. This stems from the fact that geospatial models aim to rapidly predict liquefaction anywhere in the world and thus utilize the lowest common denominator of available geospatial data, even though higher quality data is often available (e.g., in New Zealand). Accordingly, this study investigates whether the performance of geospatial models can be improved using higher-quality input data. This analysis is performed using (i) 15,101 liquefaction case studies compiled from the 2010-2016 Canterbury Earthquakes; and (ii) geospatial data readily available in New Zealand. In particular, we utilize alternative, higher-quality data to estimate: locations of rivers and streams; location of coastline; depth to ground water; Vs30; and PGV. Most notably, a region-specific Vs30 model improves performance (Figs. 3-4), while other data variants generally have little-to-no effect, even when the “standard” and “high-quality” values differ significantly (Fig. 2). This finding is consistent with the greater sensitivity of geospatial models to Vs30, relative to any other input (Fig. 5), and has implications for modeling in locales worldwide where high quality geospatial data is available.
Farming and urban regions are impacted by earthquake disasters in different ways, and feature a range of often different recovery requirements. In New Zealand, and elsewhere, most earthquake impact and recovery research is urban focused. This creates a research deficit that can lead to the application of well-researched urban recovery strategies in rural areas to suboptimal effect. To begin to reduce this deficit, in-depth case studies of the earthquake impacts and recovery of three New Zealand farms severely impacted by the 14th November 2016, M7.8 Hurunui-Kaikōura earthquake were conducted. The initial earthquake, its aftershocks and coseismic hazards (e.g., landslides, liquefaction, surface rupture) affected much of North Canterbury, Marlborough and the Wellington area. The three case study farms were chosen to broadly represent the main types of farming and topography in the Hurunui District in North Canterbury. The farms were directly and indirectly impacted by earthquakes and related hazards. On-farm infrastructure (e.g., woolsheds, homesteads) and essential services (e.g., water, power), frequently sourced from distributed networks, were severely impacted. The earthquake occurred after two years of regional drought had already stressed farm systems and farmers to restructuring or breaking point. Cascading interlinked hazards stemming from the earthquakes and coseismic hazards continued to disrupt earthquake recovery over a year after the initial earthquake. Semi-structured interviews with the farmers were conducted nine and fourteen months after the initial earthquake to capture the timeline of on-going impacts and recovery. Analysis of both geological hazard data and interview data resulted in the identification of key factors influencing farm level earthquake impact and recovery. These include pre-existing conditions (e.g., drought); farm-specific variations in recovery timelines; and resilience strategies for farm recovery resources. The earthquake recovery process presented all three farms with opportunities to change their business plans and adapt to mitigate on-going and future risk.