Some Christchurch community groups say a programme to rebuild the city's wastewater and storm water systems to a pre-earthquake equivalent isn't good enough.
An entry from Ruth Gardner's Blog for 09 January 2014 entitled, "Wastewater Work".
A presentation by Dr Matthew Hughes (Department of Civil and Natural Resource Engineering) on "Liquefaction Impacts on Christchurch's Water and Wastewater Networks".
A document outlining the methodology for rebuilding horizontal infrastructure in the central city, covering wastewater (local reticulation and trunk), wastewater pump stations, storm water (local reticulation and trunk), potable water, roads, and bridges.
A report covering the effects of wastewater overflows upon oxygen and ammonia in the Avon and Heathcote Rivers.
A chart showing wastewater discharges into Christchurch's waterways.
A map showing the status of wastewater pipes across Christchurch.
A graph comparing volumes of wastewater discharged into Christchurch rivers.
An incomplete map showing the status of wastewater pipes across Christchurch.
An emerging water crisis is on the horizon and is poised to converge with several other impending problems in the 21st century. Future uncertainties such as climate change, peak oil and peak water are shifting the international focus from a business as usual approach to an emphasis on sustainable and resilient strategies that better meet these challenges. Cities are being reimagined in new ways that take a multidisciplinary approach, decompartmentalising functions and exploring ways in which urban systems can share resources and operate more like natural organisms. This study tested the landscape design implications of wastewater wetlands in the urban environment and evaluated their contribution to environmental sustainability, urban resilience and social development. Black and grey water streams were the central focus of this study and two types of wastewater wetlands, tidal flow (staged planning) and horizontal subsurface flow wetlands were tested through design investigations in the earthquake-affected city of Christchurch, New Zealand. These investigations found that the large area requirements of wastewater wetlands can be mitigated through landscape designs that enhance a matrix of open spaces and corridors in the city. Wastewater wetlands when combined with other urban and rural services such as food production, energy generation and irrigation can aid in making communities more resilient. Landscape theory suggests that the design of wastewater wetlands must meet cultural thresholds of beauty and that the inclusion of waste and ecologies in creatively designed landscapes can deepen our emotional connection to nature and ourselves.
A pdf copy of a PowerPoint presentation made for the Water Services Association of Australia conference, about SCIRT's approach to asset investigation after the Canterbury earthquakes of 2010 and 2011.
A document which contains the slide notes to go with the PowerPoint presentation made for the Water Services Association of Australia conference.
A technical paper prepared for the Water NZ conference and expo 2012, which details how GIS and InfoNet were used to complement SCIRT's asset assessment process.
A document which outlines SCIRT's post-earthquake asset assessment process.
A diagram which illustrates SCIRT's asset assessment request process.
A report reviewing pipe installation specifications and recommending alternatives that could improve standard specifications.
A pdf copy of a PowerPoint presentation prepared for the Christchurch City Council and CPG New Zealand, providing an overview of the investigation work completed.
A design guideline which provides information about how to use the SCIRT Asset Assessment Spreadsheet.
One interactive model which demonstrates how different types of pipes perform in an earthquake.
Utility managers are always looking for appropriate tools to estimate seismic damage in wastewater networks located in earthquake prone areas. Fragility curves, as an appropriate tool, are recommended for seismic vulnerability analysis of buried pipelines, including pressurised and unpressurised networks. Fragility curves are developed in pressurised networks mainly for water networks. Fragility curves are also recommended for seismic analysis in unpressurised networks. Applying fragility curves in unpressurised networks affects accuracy of seismic damage estimation. This study shows limitations of these curves in unpressurised networks. Multiple case study analysis was applied to demonstrate the limitations of the application of fragility curves in unpressurised networks in New Zealand. Four wastewater networks within New Zealand were selected as case studies and various fragility curves used for seismic damage estimation. Observed damage in unpressurised networks after the 2007 earthquake in Gisborne and the 2010 earthquake in Christchurch demonstrate the appropriateness of the applied fragility curves to New Zealand wastewater networks. This study shows that the application of fragility curves, which are developed from pressurised networks, cannot be accurately used for seismic damage assessment in unpressurised wastewater networks. This study demonstrated the effects of different parameters on seismic damage vulnerability of unpressurised networks.
A paper published in the Journal of Structural Integrity and Maintenance, 2016, Vol. 1, No. 2, 88-93, which outlines the importance of asset registers and level of service in the wake of a disaster.
A video about the discovery of a historic tramline on North Avon Road. The video includes an interview with Brent Leersynder, a site engineer for SCIRT, and Steve Timpson, site foreman for SCIRT. The SCIRT team found the tramline while repairing the damaged wastewater system under North Avon Road in May.
Aerial image of the Christchurch wastewater treatment plant taken by the Royal New Zealand Air Force for the Earthquake Commission.
Aerial image of the Christchurch wastewater treatment plant taken by the Royal New Zealand Air Force for the Earthquake Commission.
A report which details the archaeological investigations carried out during the course of SCIRT project 11232, wastewater renewal work in Sorensens Place.
A report which details the archaeological investigations carried out during the course of SCIRT project 10952, wastewater renewal work on Tuam Street.
This thesis is about many things, not least of all the September 4th 2010 and February 22nd 2011 earthquakes that shook Christchurch, New Zealand. A city was shaken, events which worked to lay open the normally invisible yet vital objects, processes and technologies which are the focus of inquiry: the sewers, pipes, pumps, the digital technologies, the land and politics which constitute the Christchurch wastewater networks. The thesis is an eclectic mix drawing together methods and concepts from Bruno Latour, John Law, Giles Deleuze and Felix Guattari, Nigel Thrift, Donna Haraway and Patrick Joyce. It is an exploration of how the technologies and objects of sanitation perform the city, and how such things which are normally hidden and obscured, are made visible. The question of visibility is also turned toward the research itself: how does one observe, and describe? How are sociological visibilities constructed? Through the research, the encountering of objects in the field, the processes of method, the pedagogy of concepts, and the construction of risk, the thesis comes to be understood as a particular kind of social scientific artefact which assembles four different accounts: the first regards the construction of visibility; the second explores Christchurch city from the control room where the urban sanitary infrastructures are monitored; the third chapter looks at the formatted and embodied practices which emerge with the correlation of the city and sanitation; the fourth looks at the changing politics of a city grappling with severely damaged essential services, land and structures. The final chapter considers how the differences between romantic and baroque sensibilities mean that these four accounts elicit knowing not through smoothness or uniformity, but in partiality and non-coherence. This thesis is about pipes, pump stations, and treatment plants; about the effluent of a city; about the messiness of social science when confronted by the equally messy world of wastewater.
The Master of Engineering Management Project was sponsored by the Canterbury Earthquake Recovery Authority (CERA) and consisted of two phases: The first was an analysis of existing information detailing the effects of hazardous natural events on Canterbury Lifeline Utilities in the past 15 years. The aim of this “Lessons Learned” project was to produce an analysis report that identified key themes from the research, gaps in the existing data and to provide recommendations from these “Lessons Learned.” The Second phase was the development of a practical “Disaster Mitigation Guideline” that outlined lessons in the field of Emergency Sanitation. This research would build upon the first stage and would draw from international reference to develop a guideline that has practical implementation possibilities throughout the world.
A document created in 2011, demonstrating the design parameters for the rebuild of wastewater, storm water, water supply and roading in the central city.
A photograph of volunteers from the Wellington Emergency Management Office walking down a street in Christchurch. A portaloo has been placed on the side of the road.