A photograph captioned by Paul Corliss, "Water supply at reservoir, Mount Pleasant".
A photograph captioned by Paul Corliss, "Water supply at reservoir, Mount Pleasant".
A photograph captioned by Paul Corliss, "Water supply at reservoir, Mount Pleasant".
A photograph captioned by Paul Corliss, "Water supply at reservoir, Mount Pleasant".
An entry from Ruth Gardner's blog for 2 June 2012 entitled, "Waste Water Waiting".
Overview of the Presentation Jarg: • The seismic context & liquefaction Tom: • Potable Water Supply • Waste Water Network
Workers using a digger and a front end loader to clear liquefaction from a road in Shirley. A deep puddle of water is visible at the bottom of the photograph.
For the latest on the damage caused by Monday's earthquakes, we're joined by the Christchurch City Council's water and waste unit manager, Mark Christison.
A photograph of two water tanks on New Brighton Road. One is labelled, "waste", and the other, "fresh".
A photograph of the former sites of several houses on Bangor Street. The houses were demolished after the land was zoned Red. A stake has been placed in the ground to the left. A message written on the stake reads, "412 Oxford Terrace waste water". Grass has begun to grow in the empty sites.
Photograph captioned by Fairfax, "Mark Christison, CCC's Water and Waste Unit Manager, in the earthquake-damaged water pumping station on the corner of New Brighton Road and Palmers Road".
Photograph captioned by Fairfax, "Mark Christison, CCC's Water and Waste Unit Manager, in the earthquake-damaged water pumping station on the corner of New Brighton Road and Palmers Road".
Photograph captioned by Fairfax, "Mark Christison, CCC's Water and Waste Unit Manager, in the earthquake-damaged water pumping station on the corner of New Brighton Road and Palmers Road".
None
A photograph of a panaroma of Christchurch with Spencer Park, Parklands Library, QEII Park, Bottle Lake Forest, Cowles Stadium, Animal Control, and the Waste Water Treatment Plant labelled. The panaroma is on the wall of the temporary Civil Defence headquarters set up at the Christchurch Art Gallery after the 4 September 2010 earthquake.
Photograph captioned by Fairfax, "Christchurch begins the slow recovery process after last weeks devastating 7.1 earthquake. Prime Minister John Key visits a waste water plant near Bromley. Water lab technician Asli Carol and her son Alexander meet the Prime Minister".
A photograph of a portaloo outside a residential property in Christchurch. After the 22 February 2011 earthquake, many houses had no running water and were forced to use chemical toilets or portaloos placed along the street. There is flooding and liquefaction on the street in the foreground. Liquefaction silt has been piled on the side of the road and a road cone placed in front.
Photograph captioned by Fairfax, "Christchurch begins the slow recovery process after last weeks devastating 7.1 earthquake. Prime Minister John Key visits a waste water plant near Bromley".
Photograph captioned by Fairfax, "Acland Ave and other nearby residents upset about houses that are green stickered being unliveable. They cannot access any relief funds. Council water and waste manager Mark Christison talks to residents".
A paper published in the Journal of Structural Integrity and Maintenance, 2016, Vol. 1, No. 2, 88-93, which outlines the importance of asset registers and level of service in the wake of a disaster.
Photograph captioned by Fairfax, "Christchurch begins the slow recovery process after last weeks devastating 7.1 earthquake. Prime Minister John Key visits a waste water plant near Bromley. Ian Wishart and Gerry Brownlee in the background".
A video of a press conference with Mayor Bob Parker about the 4 September 2010 earthquake. The conference is held outside the temporary Civil Defence headquarters in the Christchurch Art Gallery. Parker announces that he had declared a state of emergency for Christchurch. He also gives advice to residents, telling them to conserve water, avoid flushing the toilets, to not go out and 'rubberneck', and to check on their neighbours.
With the occurrence of natural disasters on the increase, major cities around the world face the potential of complete loss of infrastructure due to design guidelines that do not consider resilience in the design. With the February 22nd, 2011 earthquake in Christchurch, being the largest insured event, lessons learnt from the rebuild will be vital for the preparation of future disasters. Therefore the objective of this research is to understand the financial implications of the changes to the waste water design guidelines used throughout the five year rebuild programme of works. The research includes a study of the SCIRT alliance model selected for the delivery that is flexible enough to handle changes in the design with minimal impact on the direct cost of the rebuild works. The study further includes the analysis and compares the impact of the three different guidelines on maintenance and replacement cost over the waste water pipe asset life. The research concludes that with the varying ground conditions in Christchurch and also the wide variety of materials in use in the waste water network up to the start of the CES, the rebuild was not a ‘one size fits all’ approach.
Photograph captioned by Fairfax, "Christchurch begins the slow recovery process after last weeks devastating 7.1 earthquake. Prime Minister John Key visits a waste water plant near Aranui. Pictured with Christchurch mayor Bob Parker and his wife Jo Nichols-Parker".
Photograph captioned by Fairfax, "Christchurch begins the slow recovery process after last weeks devastating 7.1 earthquake. Prime Minister John Key visits a waste water plant near Aranui. Pictured with Christchurch mayor Bob Parker and his wife Jo Nichols-Parker".
This thesis documents the development and demonstration of an assessment method for analysing earthquake-related damage to concrete waste water gravity pipes in Christchurch, New Zealand, following the 2010-2011 Canterbury Earthquake Sequence (CES). The method is intended to be internationally adaptable to assist territorial local authorities with improving lifelines infrastructure disaster impact assessment and improvements in resilience. This is achieved through the provision of high-resolution, localised damage data, which demonstrate earthquake impacts along the pipe length. The insights gained will assist decision making and the prioritisation of resources following earthquake events to quickly and efficiently restore network function and reduce community impacts. The method involved obtaining a selection of 55 reinforced concrete gravity waste water pipes with available Closed-Circuit Television (CCTV) inspection footage filmed before and after the CES. The pipes were assessed by reviewing the recordings, and damage was mapped to the nearest metre along the pipe length using Geographic Information Systems. An established, systematic coding process was used for reporting the nature and severity of the observed damage, and to differentiate between pre-existing and new damage resulting from the CES. The damage items were overlaid with geospatial data such as Light Detection and Ranging (LiDAR)-derived ground deformation data, Liquefaction Resistance Index data and seismic ground motion data (Peak Ground acceleration and Peak Ground Velocity) to identify potential relationships between these parameters and pipe performance. Initial assessment outcomes for the pipe selection revealed that main pipe joints and lateral connections were more vulnerable than the pipe body during a seismic event. Smaller diameter pipes may also be more vulnerable than larger pipes during a seismic event. Obvious differential ground movement resulted in increased local damage observations in many cases, however this was not obvious for all pipes. Pipes with older installation ages exhibited more overall damage prior to a seismic event, which is likely attributable to increased chemical and biological deterioration. However, no evidence was found relating pipe age to performance during a seismic event. No evidence was found linking levels of pre-CES damage in a pipe with subsequent seismic performance, and seismic performance with liquefaction resistance or magnitude of seismic ground motion. The results reported are of limited application due to the small demonstration sample size, but reveal the additional level of detail and insight possible using the method presented in this thesis over existing assessment methods, especially in relation to high resolution variations along the length of the pipe such as localised ground deformations evidenced by LiDAR. The results may be improved by studying a larger and more diverse sample pool, automating data collection and input processes in order to improve efficiency and consider additional input such as pipe dip and cumulative damage over a large distance. The method is dependent on comprehensive and accurate pre-event CCTV assessments and LIDAR data so that post-event data could be compared. It is proposed that local territorial authorities should prioritise acquiring this information as a first important step towards improving the seismic resilience of a gravity waste water pipe network.
This thesis documents the development and demonstration of an assessment method for analysing earthquake-related damage to concrete waste water gravity pipes in Christchurch, New Zealand, following the 2010-2011 Canterbury Earthquake Sequence (CES). The method is intended to be internationally adaptable to assist territorial local authorities with improving lifelines infrastructure disaster impact assessment and improvements in resilience. This is achieved through the provision of high-resolution, localised damage data, which demonstrate earthquake impacts along the pipe length. The insights gained will assist decision making and the prioritisation of resources following earthquake events to quickly and efficiently restore network function and reduce community impacts. The method involved obtaining a selection of 55 reinforced concrete gravity waste water pipes with available Closed-Circuit Television (CCTV) inspection footage filmed before and after the CES. The pipes were assessed by reviewing the recordings, and damage was mapped to the nearest metre along the pipe length using Geographic Information Systems. An established, systematic coding process was used for reporting the nature and severity of the observed damage, and to differentiate between pre-existing and new damage resulting from the CES. The damage items were overlaid with geospatial data such as Light Detection and Ranging (LiDAR)-derived ground deformation data, Liquefaction Resistance Index data and seismic ground motion data (Peak Ground acceleration and Peak Ground Velocity) to identify potential relationships between these parameters and pipe performance. Initial assessment outcomes for the pipe selection revealed that main pipe joints and lateral connections were more vulnerable than the pipe body during a seismic event. Smaller diameter pipes may also be more vulnerable than larger pipes during a seismic event. Obvious differential ground movement resulted in increased local damage observations in many cases, however this was not obvious for all pipes. Pipes with older installation ages exhibited more overall damage prior to a seismic event, which is likely attributable to increased chemical and biological deterioration. However, no evidence was found relating pipe age to performance during a seismic event. No evidence was found linking levels of pre-CES damage in a pipe with subsequent seismic performance, and seismic performance with liquefaction resistance or magnitude of seismic ground motion. The results reported are of limited application due to the small demonstration sample size, but reveal the additional level of detail and insight possible using the method presented in this thesis over existing assessment methods, especially in relation to high resolution variations along the length of the pipe such as localised ground deformations evidenced by LiDAR. The results may be improved by studying a larger and more diverse sample pool, automating data collection and input processes in order to improve efficiency and consider additional input such as pipe dip and cumulative damage over a large distance. The method is dependent on comprehensive and accurate pre-event CCTV assessments and LIDAR data so that post-event data could be compared. It is proposed that local territorial authorities should prioritise acquiring this information as a first important step towards improving the seismic resilience of a gravity waste water pipe network.
Pipes lead into a shipping container. The photographer comments, "In Christchurch containers are so very versatile: They are used as barricades, supports, homes, shops, art galleries, artworks, Malls, pubs and bars, Thai takeaways and now sewage works".
One beige Campmaster portable chemical toilet made from a matte finished high-density polythene and comprising a 20 litre holding tank for waste product and a 10 litre water tank for flushing. Chemical toilets were distributed by the Christchurch City Council as one solution to the badly damaged sewerage system following the 22 February 2011 ea...
The greater Wellington region, New Zealand, is highly vulnerable to large earthquakes. While attention has been paid to the consequences of earthquake damage to road, electricity and water supply networks, the consequences of wastewater network damage for public health, environmental health and habitability of homes remain largely unknown for Wellington City. The Canterbury and Kaikōura earthquakes have highlighted the vulnerability of sewerage systems to disruption during a disaster. Management of human waste is one of the critical components of disaster planning to reduce faecal-oral transmission of disease and exposure to disease-bearing vectors. In Canterbury and Kaikōura, emergency sanitation involved a combination of Port-a-loos, chemical toilets and backyard long-drops. While many lessons may be learned from experiences in Canterbury earthquakes, it is important to note that isolation is likely to be a much greater factor for Wellington households, compared to Christchurch, due to the potential for widespread landslides in hill suburbs affecting road access. This in turn implies that human waste may have to be managed onsite, as options such as chemical toilets and Port-a-loos rely completely on road access for delivering chemicals and collecting waste. While some progress has been made on options such as emergency composting toilets, significant knowledge gaps remain on how to safely manage waste onsite. In order to bridge these gaps, laboratory tests will be conducted through the second half of 2019 to assess the pathogen die-off rates in the composting toilet system with variables being the type of carbon bulking material and the addition of a Bokashi composting activator.