Search

found 5 results

Research papers, University of Canterbury Library

A building boom in the 1980s allowed pre-stressed hollow-core floor construction to be widely adopted in New Zealand, even though the behaviour of these prefabricated elements within buildings was still uncertain. Inspections following the Canterbury and Kaikōura earthquakes has provided evidence of web-splitting, transverse cracking and longitudinal splitting on hollow-core units, confirming the susceptibility of these floors to undesirable failure modes. Hollow-core slabs are mainly designed to resist bending and shear. However, there are many applications in which they are also subjected to torsion. In New Zealand, hollow-core units contain no transverse reinforcement in the soffit concrete below the cells and no web reinforcement. Consequently, their dependable performance in torsion is limited to actions that they can resist before torsional cracking occurs. In previous work by the present authors, a three-dimensional FE modelling approach to study the shear flexural behaviour of precast pre-stressed hollow core units was developed and validated by full-scale experiments. This paper shows how the FE analyses have been extended to investigate the response of HC units subjected to torsional actions. Constitutive models, based on nonlinear fracture mechanics, have been used to numerically predict the torsional capacity of HC units and have been compared with experimental results. The results indicate that the numerical approach is promising and should be developed further as part of future research.

Research papers, University of Canterbury Library

Glazing systems are non-structural elements in a building that, more often than not, appear to be given little consideration in seismic design. Recent experimental work into glazing systems at the University of Canterbury, however, has shown that glazing systems can be very susceptible to serviceability damage, defined as loss of water-tightness. The focus of this paper is to highlight the difference in vulnerability of standard and seismic glazing systems and consider the implications of this for future repair costs and losses. The paper first describes the damage states chosen for glazing units according to the repair strategies required and expected repair costs. This includes three damage states: DS1: Water Leakage, DS2: Gasket Failure and DS3: Frame/Glass Failure. Implementing modern performance-based earthquake engineering, the paper proceeds to highlight a case study comparing costs and expected losses of a standard glazing unit and a seismic glazing unit installed on a case study building. It is shown that the use of seismic glazing units is generally beneficial over time, due to the early onset of serviceability damage in standard glazing units. Finally, the paper provides suggestions for designers aimed at reducing costs related to earthquake induced repairs of glazing.

Research papers, University of Canterbury Library

Floor systems with precast concrete hollow-core units have been largely used in concrete buildings built in New Zealand during the 1980’s. Recent earthquakes, such as the Canterbury sequence in 2010-2011 and the Kaikoura earthquake in 2016, highlighted that this floor system can be highly vulnerable and potentially lead to the floor collapse. A series of research activities are in progress to better understand the seismic performance of floor diaphragms, and this research focuses on examining the performance of hollow core units running parallel to the walls of wall-resisting concrete structures. This study first focused on the development of fragility functions, which can be quickly used to assess likelihood of the hollow-core being able to survive given the buildings design drift, and secondly to determine the expected performance of hollow-core units that run parallel to walls, focusing on the alpha unit running by the wall. Fragility functions are created for a range of different parameters for both vertical dislocation and crack width that can be used as the basis of a quick analysis or loss estimation for the likely impact of hollow-core floors on building vulnerability and risk. This was done using past experimental tests, and the recorded damage. Using these results and the method developed by Baker fragility curves were able to be created for varying crack widths and vertical dislocations. Current guidelines for analysis of hollow-core unit incompatible displacements are based on experimental vertical displacement results from concrete moment resisting frame systems to determine the capacity of hollow-core elements. To investigate the demands on hollow-core units in a wall-based structure, a fibre-element model in the software Seismostruct is created and subject to quasi-static cyclic loading, using elements which are verified from previous experimental tests. It is shown that for hollow-core units running by walls that the 10 mm displacement capacity used for hollow-core units running by a beam is insufficient for members running by walls and that shear analysis should be used. The fibre-element model is used to simulate the seismic demand induced on the floor system and has shown that the shear demand is a function of drift, wall length, hollow-core span, linking slab length and, to a minor extent, wall elongation.

Audio, Radio New Zealand

A protest is underway outside insurance company Vero's Christchurch's office, with building owners dismayed to be still fighting for earthquake repairs 10 years on.  The protest was organised by the owners of an 11 unit apartment block in New Brighton, who says Vero is purposefully delaying progress to wear them down.  RNZ's reporter Rachel Graham is at the protest and spoke to Meriana Johnsen   

Audio, Radio New Zealand

A Christchurch man with terminal cancer is using his final days to battle his insurance company, a decade on from the deadly earthquakes. Brian Shaw owns an apartment that's in a block of 11. They were all damaged in 2011. Shaw is a building consent officer. He says getting technical reports and chasing a settlement with insurer Vero has already cost the unit owners about $400,000, and they still have not even made it to court. On Friday morning he will be protesting outside Vero's Christchurch office, along with other unhappy customers.