Search

found 24 results

Images, UC QuakeStudies

A photograph of the earthquake-damaged Observatory tower at the Christchurch Arts Centre. The photograph was taken using a cellphone camera. The top of the tower collapsed during the 22 February 2011 earthquake. The rubble from the tower has been cleared and a tarpaulin has been placed over the top of the broken tower. Tyres have been placed on the tarpaulin to hold it down. A temporary roof has also been constructed over the tower to keep out the rain. Two vehicles are parked in front.

Images, UC QuakeStudies

A photograph of the earthquake-damaged Observatory tower at the Christchurch Arts Centre. The photograph was taken using a cellphone camera. The top of the tower collapsed during the 22 February 2011 earthquake. The rubble from the tower has been cleared and a tarpaulin has been placed over the top of the broken tower. Tyres have been placed on the tarpaulin to hold it down. A temporary roof has also been constructed over the tower to keep out the rain.

Research papers, University of Canterbury Library

Over 6.3 million waste tyres are produced annually in New Zealand (Tyrewise, 2021), leading to socioeconomic and environmental concerns. The 2010-11 Canterbury Earthquake Sequence inflicted extensive damage to ~6,000 residential buildings, highlighting the need to improve the seismic resilience of the residential housing sector. A cost-effective and sustainable eco-rubber geotechnical seismic isolation (ERGSI) foundation system for new low-rise buildings was developed by the authors. The ERGSI system integrates a horizontal geotechnical seismic isolation (GSI) layer i.e., a deformable seismic energy dissipative filter made of granulated tyre rubber (GTR) and gravel (G) – and a flexible rubberised concrete raft footing. Geotechnical experimental and numerical investigations demonstrated the effectiveness of the ERGSI system in reducing the seismic demand at the foundation level (i.e., reduced peak ground acceleration) (Hernandez et al., 2019; Tasalloti et al., 2021). However, it is essential to ensure that the ERGSI system has minimal leaching attributes and does not result in long-term negative impacts on the environment.

Images, UC QuakeStudies

Trucks and diggers build large piles of liquefaction silt. One pile has been covered with plastic sheeting, weighted down with tyres. In the foreground can be seen the Bromley sewage treatment ponds. The photographer comments, "Looking NW from the causeway through the sewage wetlands. Mountains of liquefaction silt are being piled up near the corner of Breezes Rd and SH74-Anzac Drive".

Images, UC QuakeStudies

Trucks and diggers build large piles of liquefaction silt. One pile has been covered with plastic sheeting, weighted down with tyres. In the foreground can be seen the Bromley sewage treatment ponds. The photographer comments, "Looking NW from the causeway through the sewage wetlands. Mountains of liquefaction silt are being piled up near the corner of Breezes Rd and SH74-Anzac Drive".

Images, UC QuakeStudies

A pothole in a road surface, showing tyre marks where a vehicle has driven through the hole. The photographer comments, "After the earthquake in Christchurch in February 2011 burst underground pipes and liquefaction caused unseen hollows under the road surfaces. Occasionally after all the rest have been exposed by traffic someone would find 'discover' a new one".

Images, UC QuakeStudies

Pallet Golf', a Gap Golf course on a the site of a demolished building. It has been built by Gap Filler to look like a journey through Christchurch. A plastic road cone as well as mini road cones, road signs, tunnels and rivers can be seen. The course has been built using green felt, wooden pallets, tyres, planks of wood and bricks.

Images, Canterbury Museum

One black plastic barrelled wheelbarrow with a blue metal frame, black rubber handles and a pneumatic tyre; manufacturer's name in white on long sides and torn promotional label on short side near handles. Barrel is well used and contains remnants of liquefaction. Used by Student Volunteer Army in the clean up after 4 September 2010 earthquake. ...

Images, UC QuakeStudies

Large piles of liquefaction silt at a dump on Breezes Road. One of the piles is covered with black plastic and weighted down with tyres. Trucks and diggers are adding more silt to the piles. The photographer comments, "Breezes Road and Anzac Drive have recently opened but are now home to a brand new range of hills thanks to mountains of silt that have been collected by the hard working construction guys that have done a sterling job on the road there".

Images, UC QuakeStudies

A large chess board made from sand and broken shells, with a painted beach scene on the wall behind. The photographer comments, "After all the suggestions put on the wall on what to do in this area, which was once an earthquake damaged shop, they have made the chess board, painted a seaside scene on the wall and created a small wall of tyres".

Images, UC QuakeStudies

Large piles of liquefaction silt at a dump on Breezes Road. One of the piles is covered with black plastic and weighted down with tyres. Trucks and diggers are adding more silt to the piles. The photographer comments, "Breezes Road and Anzac Drive have recently opened but are now home to a brand new range of hills thanks to mountains of silt that have been collected by the hard working construction guys that have done a sterling job on the road there".

Research papers, University of Canterbury Library

Recent earthquakes in New Zealand proved that a shift is necessary in the current design practice of structures to achieve better seismic performance. Following such events, the number of new buildings using innovative technical solutions (e.g. base isolation, controlled rocking systems, damping devices, etc.), has increased, especially in Christchurch. However, the application of these innovative technologies is often restricted to medium-high rise buildings due to the maximum benefit to cost ratio. In this context, to address this issue, a multi-disciplinary geo-structural-environmental engineering project funded by the Ministry of Business Innovation and Employment (MBIE) is being carried out at the University of Canterbury. The project aims at developing a foundation system which will improve the seismic performance of medium-density low-rise buildings. Such foundation is characterized by two main elements: 1) granulated tyre rubber mixed with gravelly soils to be placed beneath the structure, with the goal of damping part of the seismic energy before it reaches the superstructure; and 2) a basement raft made of steel-fibre rubberised concrete to enhance the flexibility of the foundation under differential displacement demand. In the first part of this paper, the overarching objectives, scope and methodology of the project will be briefly described. Then, preliminary findings on the materials characterization, i.e., the gravel-rubber mixtures and steel-fibre rubberised concrete mixes, will be presented and discussed with focus on the mechanical behaviour.