Paul and Sam Corliss's Street Art Photograph (2014:03:30 16:50:53)
Images, UC QuakeStudies
A photograph of fence art in Cathedral Square. The artwork shows different types of flowers.
A photograph of fence art in Cathedral Square. The artwork shows different types of flowers.
A photograph of fence art in the Cathedral Square. The artwork shows different types of flowers.
Natural disasters are increasingly disruptive events that affect livelihoods, organisations, and economies worldwide. Research has identified the impacts and responses of organisations to different types of natural disasters, and have outlined factors, such as industry sector, that are important to organisational vulnerability and resilience. One of the most costly types of natural disasters in recent years has been earthquakes, and yet to date, the majority of studies have focussed on the effects of earthquakes in urban areas, while rural organisational impact studies have primarily focused on the effects of meteorological and climatic driven hazards. As a result, the likely impacts of an earthquake on rural organisations in a developed context is unconstrained in the literature. In countries like New Zealand, which have major earthquakes and agricultural sectors that are significant contributors to the economy, it is important to know what impacts an earthquake event would have on the rural industries, and how these impacts compare to that of a more commonly analysed, high-frequency event. In September of 2010, rural organisations in Canterbury experienced the 4 September 2010 Mw 7.1 `Darfield' earthquake and the associated aftershocks, which came to be known as the Canterbury earth- quake sequence. The earthquake sequence caused intense ground shaking, creating widespread critical service outages, structural and non-structural damage to built infrastructure, as well as ground surface damage from ooding, liquefaction and surface rupture. Concurrently on September 18 2010, rural organisations in Southland experienced an unseasonably late snowstorm and cold weather snap that brought prolonged sub-zero temperatures, high winds and freezing rain, damaging structures in the City of Invercargill and causing widespread livestock losses and production decreases across the region. This thesis documents the effects of the Canterbury earthquake sequence and Southland snowstorm on farming and rural non-farming organisations, utilizing comparable methodologies to analyse rural organisational impacts, responses and recovery strategies to natural disasters. From the results, a short- term impact assessment methodology is developed for multiple disasters. Additionally, a regional asset repair cost estimation model is proposed for farming organisations following a major earthquake event, and the use of social capital in rural organisational recovery strategies following natural disasters is analysed.
Between September 4, 2010 and December 23, 2011, a series of earthquakes struck the South Island of New Zealand including the city of Christchurch producing heavy damage. During the strongest shaking, the unreinforced masonry (URM) building stock in Christchurch was subjected to seismic loading equal to approximately 150-200% of code values. Post-earthquake reconnaissance suggested numerous failures of adhesive anchors used for retrofit connection of roof and floor diaphragms to masonry walls. A team of researchers from the Universities of Auckland (NZ) and Minnesota (USA) conducted a field investigation on the performance of new adhesive anchors installed in existing masonry walls. Variables included adhesive type, anchor diameter, embedment length, anchor inclination, and masonry quality. Buildings were selected that had been slated for demolition but which featured exterior walls that had not been damaged. A summary of the deformation response measured during the field tests are presented. AM - Accepted Manuscript
This paper presents the preliminary findings of a study on the resilience and recovery of organisations following the Darfield earthquake in New Zealand on 4 September 2010. Sampling included organisations proximal and distal to the fault trace, organisations located within central business districts, and organisations from seven diverse industry sectors. The research captured information on the challenges to, the impacts on, and the reflections of the organisations in the first months of recovery. Organisations in central business districts and in the hospitality sector were most likely to close while organisations that had perishable stock and livestock were more heavily reliant on critical services. Staff well-being, cash flow, and customer loss were major concerns for organisations across all sectors. For all organisations, the most helpful factors in mitigating the effects of the earthquake to be their relationship with staff, the design and type of buildings, and critical service continuity or swift reinstatement of services.
This poster provides a summary of the development of a 3D shallow (z<40m) shear wave velocity (Vs) model for the urban Christchurch, New Zealand region. The model is based on a recently developed Christchurch-specific empirical correlation between Vs and cone penetration test (CPT) data (McGann et al. 2014a,b) and the large high-density database of CPT logs in the greater Christchurch urban area (> 15,000 logs as of 01/01/2014). In particular, the 3D model provides shear wave velocities for the surficial Springston Formation, Christchurch Formation, and Riccarton gravel layers which generally comprise the upper 40m in the Christchurch urban area. Point-estimates are provided on a 200m-by- 200m grid from which interpolation to other locations can be performed. This model has applications for future site characterization and numerical modeling efforts via maps of timeaveraged Vs over specific depths (e.g. Vs30, Vs10) and via the identification of typical Vs profiles for different regions and soil behaviour types within Christchurch. In addition, the Vs model can be used to constrain the near-surface velocities for the 3D seismic velocity model of the Canterbury basin (Lee et al. 2014) currently being developed for the purpose of broadband ground motion simulation.
As a result of the Christchurch Earthquake that occurred on 22nd February 2011 and the resultant loss of life and widespread damage, a Royal Commission of Enquiry was convened in April 2011. The Royal Commission recommended a number of significant changes to the regulation of earthquake prone building in New Zealand. Earthquake prone buildings are buildings that are deemed to be of insufficient strength to perform adequately in a moderate earthquake. In response to the Royal Commission recommendations the New Zealand Government carried out a consultative process before announcing proposed changes to the building regulations in August 2013. One of the most significant changes is the imposition of mandatory strengthening requirements for earthquake prone buildings on a national basis. This will have a significant impact on the urban fabric of most New Zealand towns and cities. The type of traditional cost benefit study carried out to date fails to measure these impacts and this paper proposes an alternative methodology based on the analysis of land use data and rating valuations. This methodology was developed and applied to a small provincial town in the form of a case study. The results of this case study and the methodology used are discussed in this paper.
The Christchurch earthquakes brought to an abrupt halt a process of adaptive reuse and gentrification that was underway in the south eastern corner of the central business district. The retail uses that were a key to the success of this area pre-earthquake could be characterised as small, owner operated, quirky, bohemian, chaotic and relatively low rent. This research reports on the progress of a long term, comprehensive case study that follows the progress of these retailers both before and after the earthquakes. Findings include the immediate post-earthquake intentions to resume business in the same location as soon as possible were thwarted by government imposed cordons of the CBD that were only lifted nearly three years later. But, businesses were resilient and generally reinvented themselves quickly in alternative suburban locations where government “rebuild” restrictions were absent. It remains to be seen if this type of retail will ever return to the CBD as government imposed plans and the rents demanded for retail space in new buildings appear to preclude small owner-operated businesses.
The coordination of actors has been a major focus for much of the research in the disaster relief humanitarian logistics discipline. While much of this literature focuses on the initial response phase, little has been written on the longer term recover phase. As the response phase transitions into the longer term recover phase the number and types of actors change from predominantly disaster relief NGOs to more commercial entities we argue that humanitarian values should still be part of the rebuild phase. It has been noted that humanitarian actors both cooperate and compete at the same time (Balcik, Beamon, Krejci, Muramatsu and Ramirez, 2010), in a form of behavior that can be described as ‘co-opetition’ (Nalebuff and Brandenburger, 1996). We use a case study approach to examine an organizational model used to coordinate civil and commercial actors for the rebuild of the civil infrastructure for Christchurch, New Zealand following a series of devastating earthquakes in 2010/11. For the rebuild phase we argue that ‘co-opetition’ is a key behaviour that allows the blending of humanitarian and commercial values to help communities rebuild to a new normal. While at this early stage our contribution is limited, we eventually hope to fully elaborate on an organisational model that has been created specifically for the tight coordination of commercial actors and its relevance to the rebuild phase of a disaster. Examining the behaviour of co-opetition and the structures that incentivise this behaviour offers insights for the humanitarian logistic field.
Tertiary students, not just working populations, might be experiencing feelings of burnout following the Christchurch earthquakes of 2010 and 2011. In the aftermath of a major disaster, the gap between the resources available to handle pressures (e.g., support) and the demands inherent in the pursuit of an academic degree (e.g., heavy workload) may lead to feelings of burnout among students. This study hypothesised that burnout dimensions (emotional exhaustion and disengagement) would be related to students’ perceptions of immediate institutional support, extended institutional support, peer support, family support, and work overload. Additionally, it was proposed that institutional and social support would moderate the relationship between work overload and burnout. Two hundred and seventy one third and fourth year students were sampled using an online questionnaire. These particular students were expected to be at greater risk of emotional exhaustion and academic disengagement because they were at the earliest stage of their tertiary education when the major earthquakes first hit. Family support and extended institutional support were found to be associated with decreased levels of emotional exhaustion and disengagement. Meanwhile, work overload was found to be related to increased levels of emotional exhaustion and disengagement. Furthermore, both peer support and immediate institutional support were found to have a moderating effect on the relationship between work overload and disengagement. This study has exposed unique findings which contribute to burnout research especially in a post-disaster context, and raises the importance of providing the right types of support for individuals who are particularly dealing with the consequences of a natural disaster.
The Christchurch earthquakes have highlighted the importance of low-damage structural systems for minimising the economic impacts caused by destructive earthquakes. Post-tensioned precast concrete walls have been shown to provide superior seismic resistance to conventional concrete construction by minimising structural damage and residual drifts through the use of a controlled rocking mechanism. The structural response of unbonded post-tensioned precast concrete wall systems, with and without additional energy dissipating elements, were investigated by means of pseudo-static cyclic, snap back and forced vibration testing with shake table testing to be completed. Two types of post-tensioned rocking wall system were investigated; a single unbonded post-tensioned precast concrete wall or Single Rocking Wall (SRW) and a system consisting of a Precast Wall with End Columns (PreWEC). The equivalent viscous damping (EVD) was evaluated using both the pseudo-static cyclic and snap back test data for all wall configurations. The PreWEC configurations showed an increase in EVD during the snap back tests in comparison to the cyclic test response. In contrast the SRW showed lower EVD during the snap back tests in comparison to the SRW cyclic test response. Despite residual drifts measured during the pseudo-static cyclic tests, negligible residual drift was measured following the snap back tests, highlighting the dynamic shake-down that occurs during the free vibration decay. Overall, the experimental tests provided definitive examples of the behaviour of posttensioned wall systems and validated their superior performance compared to reinforced concrete construction when subjected to large lateral drifts.
Following the 2010 and 2011 earthquakes Christchurch is undergoing extensive development on the periphery of the city. This has been driven in part by the large numbers of people who have lost their homes. Prior to the earthquakes, Christchurch was already experiencing placeless subdivisions and now these are being rolled out rapidly thanks to the efficiency of a formula that has been embraced by the Council, developers and the public alike. However, sprawling subdivisions have a number of issues including inefficient land use, limited housing types, high dependence on motor vehicles and low levels of resilience and no sense of place. Sense of place is of particular interest due to its glaring absence from new subdivisions and its growing importance in the literature. Research shows that sense of place has benefits to our feeling of belonging, well-being, and self-identity, particularly following a disaster. It improves the resilience and sustainability of our living environment and fosters a connection to the landscape thereby making us better placed to respond to future changes. Despite these benefits, current planning models such as new urbanism and transit-oriented design tend to give sense of place a low priority and as a result it can get lost. Given these issues, the focus of this research is “can landscape driven sense of place drive subdivision design without compromising on other urban planning criteria to produce subdivisions that address the issues of sprawl, as well as achieving the benefits associated with a strong sense of place that can improve our overall quality of life?” Answering this question required a thorough review of current urban planning and sense of place literature. This was used to critique existing subdivisions to gain a thorough understanding of the issues. The outcomes of this led to extensive design exploration which showed that, not only is it possible to design a subdivision with sense of place as the key driver but by doing this, the other urban planning criteria become easier to achieve.
Recent experiences from the Darfield and Canterbury, New Zealand earthquakes have shown that the soft soil condition of saturated liquefiable sand has a profound effect on seismic response of buildings, bridges and other lifeline infrastructure. For detailed evaluation of seismic response three dimensional integrated analysis comprising structure, foundation and soil is required; such an integrated analysis is referred to as Soil Foundation Structure Interaction (SFSI) in literatures. SFSI is a three-dimensional problem because of three primary reasons: first, foundation systems are three-dimensional in form and geometry; second, ground motions are three-dimensional, producing complex multiaxial stresses in soils, foundations and structure; and third, soils in particular are sensitive to complex stress because of heterogeneity of soils leading to a highly anisotropic constitutive behaviour. In literatures the majority of seismic response analyses are limited to plane strain configuration because of lack of adequate constitutive models both for soils and structures, and computational limitation. Such two-dimensional analyses do not represent a complete view of the problem for the three reasons noted above. In this context, the present research aims to develop a three-dimensional mathematical formulation of an existing plane-strain elasto-plastic constitutive model of sand developed by Cubrinovski and Ishihara (1998b). This model has been specially formulated to simulate liquefaction behaviour of sand under ground motion induced earthquake loading, and has been well-validated and widely implemented in verifcation of shake table and centrifuge tests, as well as conventional ground response analysis and evaluation of case histories. The approach adopted herein is based entirely on the mathematical theory of plasticity and utilises some unique features of the bounding surface plasticity formalised by Dafalias (1986). The principal constitutive parameters, equations, assumptions and empiricism of the existing plane-strain model are adopted in their exact form in the three-dimensional version. Therefore, the original two-dimensional model can be considered as a true subset of the three-dimensional form; the original model can be retrieved when the tensorial quantities of the three dimensional version are reduced to that of the plane-strain configuration. Anisotropic Drucker-Prager type failure surface has been adopted for the three-dimensional version to accommodate triaxial stress path. Accordingly, a new mixed hardening rule based on Mroz’s approach of homogeneous surfaces (Mroz, 1967) has been introduced for the virgin loading surface. The three-dimensional version is validated against experimental data for cyclic torsional and triaxial stress paths.
In the last century, seismic design has undergone significant advancements. Starting from the initial concept of designing structures to perform elastically during an earthquake, the modern seismic design philosophy allows structures to respond to ground excitations in an inelastic manner, thereby allowing damage in earthquakes that are significantly less intense than the largest possible ground motion at the site of the structure. Current performance-based multi-objective seismic design methods aim to ensure life-safety in large and rare earthquakes, and to limit structural damage in frequent and moderate earthquakes. As a result, not many recently built buildings have collapsed and very few people have been killed in 21st century buildings even in large earthquakes. Nevertheless, the financial losses to the community arising from damage and downtime in these earthquakes have been unacceptably high (for example; reported to be in excess of 40 billion dollars in the recent Canterbury earthquakes). In the aftermath of the huge financial losses incurred in recent earthquakes, public has unabashedly shown their dissatisfaction over the seismic performance of the built infrastructure. As the current capacity design based seismic design approach relies on inelastic response (i.e. ductility) in pre-identified plastic hinges, it encourages structures to damage (and inadvertently to incur loss in the form of repair and downtime). It has now been widely accepted that while designing ductile structural systems according to the modern seismic design concept can largely ensure life-safety during earthquakes, this also causes buildings to undergo substantial damage (and significant financial loss) in moderate earthquakes. In a quest to match the seismic design objectives with public expectations, researchers are exploring how financial loss can be brought into the decision making process of seismic design. This has facilitated conceptual development of loss optimisation seismic design (LOSD), which involves estimating likely financial losses in design level earthquakes and comparing against acceptable levels of loss to make design decisions (Dhakal 2010a). Adoption of loss based approach in seismic design standards will be a big paradigm shift in earthquake engineering, but it is still a long term dream as the quantification of the interrelationships between earthquake intensity, engineering demand parameters, damage measures, and different forms of losses for different types of buildings (and more importantly the simplification of the interrelationship into design friendly forms) will require a long time. Dissecting the cost of modern buildings suggests that the structural components constitute only a minor portion of the total building cost (Taghavi and Miranda 2003). Moreover, recent research on seismic loss assessment has shown that the damage to non-structural elements and building contents contribute dominantly to the total building loss (Bradley et. al. 2009). In an earthquake, buildings can incur losses of three different forms (damage, downtime, and death/injury commonly referred as 3Ds); but all three forms of seismic loss can be expressed in terms of dollars. It is also obvious that the latter two loss forms (i.e. downtime and death/injury) are related to the extent of damage; which, in a building, will not just be constrained to the load bearing (i.e. structural) elements. As observed in recent earthquakes, even the secondary building components (such as ceilings, partitions, facades, windows parapets, chimneys, canopies) and contents can undergo substantial damage, which can lead to all three forms of loss (Dhakal 2010b). Hence, if financial losses are to be minimised during earthquakes, not only the structural systems, but also the non-structural elements (such as partitions, ceilings, glazing, windows etc.) should be designed for earthquake resistance, and valuable contents should be protected against damage during earthquakes. Several innovative building technologies have been (and are being) developed to reduce building damage during earthquakes (Buchanan et. al. 2011). Most of these developments are aimed at reducing damage to the buildings’ structural systems without due attention to their effects on non-structural systems and building contents. For example, the PRESSS system or Damage Avoidance Design concept aims to enable a building’s structural system to meet the required displacement demand by rocking without the structural elements having to deform inelastically; thereby avoiding damage to these elements. However, as this concept does not necessarily reduce the interstory drift or floor acceleration demands, the damage to non-structural elements and contents can still be high. Similarly, the concept of externally bracing/damping building frames reduces the drift demand (and consequently reduces the structural damage and drift sensitive non-structural damage). Nevertheless, the acceleration sensitive non-structural elements and contents will still be very vulnerable to damage as the floor accelerations are not reduced (arguably increased). Therefore, these concepts may not be able to substantially reduce the total financial losses in all types of buildings. Among the emerging building technologies, base isolation looks very promising as it seems to reduce both inter-storey drifts and floor accelerations, thereby reducing the damage to the structural/non-structural components of a building and its contents. Undoubtedly, a base isolated building will incur substantially reduced loss of all three forms (dollars, downtime, death/injury), even during severe earthquakes. However, base isolating a building or applying any other beneficial technology may incur additional initial costs. In order to provide incentives for builders/owners to adopt these loss-minimising technologies, real-estate and insurance industries will have to acknowledge the reduced risk posed by (and enhanced resilience of) such buildings in setting their rental/sale prices and insurance premiums.
Seismically vulnerable buildings constitute a major problem for the safety of human beings. In many parts of the world, reinforced concrete (RC) frame buildings designed and constructed with substandard detailing, no consideration of capacity design principles, and improper or no inclusion of the seismic actions, have been identified. Amongst those vulnerable building, one particular typology representative of the construction practice of the years previous to the 1970’s, that most likely represents the worst case scenario, has been widely investigated in the past. The deficiencies of that building typology are related to non-ductile detailing in beam column joints such as the use of plain round bars, the lack of stirrups inside the joint around the longitudinal reinforcement of the column, the use of 180° end hooks in the beams, the use of lap splices in potential ‘plastic hinge’ regions, and substandard quality of the materials. That type of detailing and the lack of a capacity design philosophy create a very fragile fuse in the structure where brittle inelastic behaviour is expected to occur, which is the panel zone region of exterior beam column joints. The non-ductile typology described above was extensively investigated at the University of Canterbury in the context of the project ‘Retrofit Solutions for New Zealand Multi-Storey Buildings’ (2004-2011), founded by the ‘Foundation for Research, Science and Technology’ Tūāpapa Rangahau Pūtaiao. The experimental campaign prior to the research carried out by the author consisted of quasi-static tests of beam column joint subassemblies subjected to lateral loading regime, with constant and varying axial load in the column. Most of those specimens were representative of a plane 2D frame (knee joint), while others represented a portion of a space 3D frame (corner joints), and only few of them had a floor slab, transverse beams, and lap splices. Using those experiments, several feasible, cost-effective, and non-invasive retrofit techniques were developed, improved, and refined. Nevertheless, the slow motion nature of those experiments did not take into account the dynamical component inherent to earthquake related problems. Amongst the set of techniques investigated, the use of FRP layers for strengthening beam column joints is of particular interest due to its versatility and the momentum that its use has gained in the current state of the practice. That particular retrofit technique was previously used to develop a strengthening scheme suitable for plane 2D and space 3D corner beam column joints, but lacking of floor slabs. In addition, a similar scheme was not developed for exterior joints of internal frames, referred here as ‘cruciform’. In this research a 2/5 scale RC frame model building comprising of two frames in parallel (external and internal) joined together by means of floor slabs and transverse beams, with non-ductile characteristics identical to those of the specimens investigated previously by others, and also including lap splices, was developed. In order to investigate the dynamic response of that building, a series of shake table tests with different ground motions were performed. After the first series of tests, the specimen was modified by connecting the spliced reinforcement in the columns in order to capture a different failure mode. Ground motions recorded during seismic events that occurred during the initial period of the experimental campaign (2010) were used in the subsequent experiments. The hierarchy of strengths and sequence of events in the panel zone region were evaluated in an extended version of the bending moment-axial load (M-N) performance domain developed by others. That extension was required due to the asymmetry in the beam cross section introduced by the floor slab. In addition, the effect of the torsion resistance provided by the spandrel (transverse beam) was included. In order to upgrade the brittle and unstable performance of the as-built/repaired specimen, a practical and suitable ad-hoc FRP retrofit intervention was developed, following a partial retrofit strategy that aimed to strengthen exterior beam column joints only (corner and cruciform). The ability of the new FRP scheme to revert the sequence of events in the panel zone region was evaluated using the extended version of the M-N performance domain as well as the guidelines for strengthening plane joints developed by others. Weakening of the floor slab in a novel configuration was also incorporated with the purpose of reducing the flexural capacity of the beam under negative bending moment (slab in tension), enabling the damage relocation from the joint into the beam. The efficacy of the developed retrofit intervention in upgrading the seismic performance of the as-built specimen was investigated using shake table tests with the input motions used in the experiments of the as-built/repaired specimen. Numerical work aimed to predict the response of the model building during the most relevant shake table tests was carried out. By using a simple numerical model with concentrated plasticity elements constructed in Ruaumoko2D, the results of blind and post-experimental predictions of the response of the specimen were addressed. Differences in the predicted response of the building using the nominal and the actual recorded motions of the shake table were investigated. The dependence of the accuracy of the numerical predictions on the assumed values of the parameters that control the hysteresis rules of key structural members was reviewed. During the execution of the experimental campaign part of this thesis, two major earthquakes affected the central part of Chile (27 of February 2010 Maule earthquake) and the Canterbury region in New Zealand (22 February 2011 Canterbury earthquake), respectively. As the author had the opportunity to experience those events and investigate their consequences in structures, the observations related to non-ductile detailing and drawbacks in the state of the practice related to reinforced concrete walls was also addressed in this research, resulting in preliminary recommendations for the refinement of current seismic code provisions and assessment guidelines. The investigations of the ground motions recorded during those and other earthquakes were used to review the procedures related to the input motions used for nonlinear dynamic analysis of buildings as required by most of the current code provisions. Inelastic displacement spectra were constructed using ground motions recorded during the earthquakes mentioned above, in order to investigate the adequacy of modification factors used to obtain reduced design spectra from elastic counterparts. Finally a simplified assessment procedure for RC walls that incorporates capacity compatible spectral demands is proposed.