A photograph of fence art in Cathedral Square. The artwork shows different types of flowers.
A photograph of fence art in the Cathedral Square. The artwork shows different types of flowers.
A diagram which shows outputs from SCIRT's March 2012 capability survey, detailing the number and type of positions that needed to be filled.
Cracking in the brickwork of an archway on Manchester Street. This type of cracking was common in the Central City after the 4 September earthquake.
A guideline which provided clarity to designers, asset owners and others on the meaning of terminology to describe the type of roading works proposed/undertaken.
A photograph captioned by BeckerFraserPhotos, "Ground floor of the Holiday Inn. We could see piles of different types of materials sorted and bagged through the windows here".
Plastic barriers and fencing around a demolition site on the corner of Cranford and Westminster Streets. Different types of building rubble have been sorted into piles, and a concrete block still remains on-site.
This thesis describes the management process of innovation through construction infrastructure projects. This research focuses on the innovation management process at the project level from four views. These are categorised into the separate yet related areas of: “innovation definition”, “Project time”, “project team motivation” and “Project temporary organisation”. A practical knowledge is developed for each of these research areas that enables project practitioners to make the best decision for the right type of innovation at the right phase of projects, through a capable project organisation. The research developed a holistic view on both innovation and the construction infrastructure project as two complex phenomena. An infrastructure project is a long-term capital investment, highly risky and an uncertain. Infrastructure projects can play a key role in innovation and performance improvement throughout the construction industry. The delivery of an infrastructure project is affected in most cases by critical issues of budget constraint, programme delays and safety Where the business climate is characterized by uncertainty, risk and a high level of technological change, construction infrastructure projects are unable to cope with the requirement to develop innovation. Innovation in infrastructure projects, as one of the key performance indicators (KPI) has been identified as a critical capability for performance improvement through the industry. However, in spite of the importance of infrastructure projects in improving innovation, there are a few research efforts that have developed a comprehensive view on the project context and its drivers and inhibitors for innovation in the construction industry. Two main reasons are given as the inhibitors through the process of comprehensive research on innovation management in construction. The first reason is the absence of an understanding of innovation itself. The second is a bias towards research at a firm and individual level, so a comprehensive assessment of project-related factors and their effects on innovation in infrastructure projects has not been undertaken. This study overcomes these issues by adopting as a case study approach of a successful infrastructure project. This research examines more than 500 construction innovations generated by a unique infrastructure alliance. SCIRT (Stronger Christchurch Infrastructure Rebuild Team) is a temporary alliancing organisation that was created to rebuild and recover the damaged infrastructure after the Christchurch 2011 earthquake. Researchers were given full access to the innovation project information and innovation systems under a contract with SCIRT Learning Legacy, provided the research with material which is critical for understanding innovations in large, complex alliancing infrastructure organisation. In this research, an innovation classification model was first constructed. Clear definitions have been developed for six types of construction innovation with a variety of level of novelties and benefits. The innovation classification model was applied on the SCIRT innovation database and the resultant trends and behaviours of different types of innovation are presented. The trends and behaviours through different types of SCIRT innovations developed a unique opportunity to research the projectrelated factors and their effect on the behaviour of different classified types of innovation throughout the project’s lifecycle. The result was the identification of specific characteristics of an infrastructure project that affect the innovation management process at the project level. These were categorised in four separate chapters. The first study presents the relationship between six classified types of innovation, the level of novelty and the benefit they come up with, by applying the innovation classification model on SCIRT innovation database. The second study focused on the innovation potential and limitations in different project lifecycle phases by using a logic relationship between the six classified types of innovation and the three classified phases of the SCIRT project. The third study result develops a holistic view of different elements of the SCIRT motivation system and results in a relationship between the maturity level of definition developed for innovation as one of the KPIs and a desire though the SCIRT innovation incentive system to motivate more important innovations throughout the project. The fourth study is about the role of the project’s temporary organisation that finally results in a multiple-view innovation model being developed for project organisation capability assessment in the construction industry. The result of this thesis provides practical and instrumental knowledge to be used by a project practitioner. Benefits of the current thesis could be categorized in four groups. The first group is the innovation classification model that provides a clear definition for six classified types of innovation with four levels of novelty and specifically defined outcomes and the relationship between the innovation types, novelty and benefit. The second is the ability that is provided for the project practitioner to make the best decision for the right type of innovation at the right phases of a project’s lifecycle. The third is an optimisation that is applied on the SCIRT innovation motivation system that enables the project practitioner to incentivize the right type of innovation with the right level of financial gain. This drives the project teams to develop a more important innovation instead of a simple problemsolving one. Finally, the last and probably more important benefit is the recommended multiple-view innovation model. This is a tool that could be used by a project practitioner in order to empower the project team to support innovation throughout the project.
Plastic barriers and fencing around a demolition site at the corner of Cranford and Westminster Streets. Different types of building rubble have been sorted into piles, and a concrete block still remains on-site.
In the last two decades, the retail sector has experienced unprecedented upheaval, having severe implications for economic development and sustenance of traditional inner-city retail districts. In the city of Christchurch, New Zealand, this effect has been exacerbated by a series of earthquakes in 2010/2011 which destroyed much of the traditional retail precinct of the city. After extensive rebuild activity of the city’s infrastructure, the momentum of retailers returning to the inner city was initially sluggish but eventually gathered speed supported by increased international visitation. In early 2020, the return to retail normality came to an abrupt halt after the emergence of the COVID-19 pandemic. This study uses spending and transaction data to analyze the compounding impact of the earthquake’s aftermath, shift to online shopping, and the retail disruption in the Christchurch central retail precinct because of COVID-19. The findings illustrate how consumers through their spending respond to different types of external shocks, altering their consumption patterns and retail mode (offline and online) to cope with an ever-changing retail landscape. Each event triggers different spending patterns that have some similarities but also stark differences, having implications for a sustainable and resilient retail industry in Christchurch. Implications for urban retail precinct development are also discussed.
This thesis aims to find a new weld sizing criterion for the steel construction industry in New Zealand. Current standards, such as NZS 3404, ANSI/AISC 360-16, and Eurocode 3 use a factor of 0.6 to calculate weld capacity from the weld metal’s ultimate tensile strength (UTS). This difference between weld capacity and UTS is thought to have arisen from the need for a large factor of safety to ensure welds perform correctly during an earthquake. The events in Christchurch proved that this criterion was able to work as intended. Several papers have been published by P. Dong from University of Michigan, and alongside other researchers, they investigate a new definition of weld shear strength by using a traction stress-based method. This new method not only allows realistic angles of weld fracture to be investigated, but also different weld geometries such as partial penetration butt welds. Ongoing research at HERA is showing how this welding technique is a more economical option than larger fillet welds with similar performance. For this thesis a range of sample types were statically tested until failure. UTS of several weld metals was found and then compared with transverse shear results to see if 0.6 is indeed correct. It was found that if the results from the standardized transverse shear samples was used, this ratio could be increased to 1.0. But if the results from cruciform joint samples was used, which still load the weld in a transverse direction but with a higher stress concentration, required the ratio to be 0.8 for welds that could be welded with a single pass, and decreased further to 0.75 for large welds with 3 passes. Two types of partial penetration butt weld (PPBW) geometries were compared to a comparatively sized fillet weld. These tests showed the PPBWs were the best performers, with all PPBWs surviving testing compared to only 33% of fillet welds.
The connections between walls of unreinforced masonry (URM) buildings and flexible timber diaphragms are critical building components that must perform adequately before desirable earthquake response of URM buildings may be achieved. Field observations made during the initial reconnaissance and the subsequent damage surveys of clay brick URM buildings following the 2010/2011 Canterbury, New Zealand earthquakes revealed numerous cases where anchor connections joining masonry walls or parapets with roof or floor diaphragms appeared to have failed prematurely. These observations were more frequent for the case of adhesive anchor connections than for the case of through-bolt connections (i.e. anchorages having plates on the exterior façade of the masonry walls). Subsequently, an in-field test program was undertaken in an attempt to evaluate the performance of adhesive anchor connections between unreinforced clay brick URM walls and roof or floor diaphragm. The study consisted of a total of almost 400 anchor tests conducted in eleven existing URM buildings located in Christchurch, Whanganui and Auckland. Specific objectives of the study included the identification of failure modes of adhesive anchors in existing URM walls and the influence of the following variables on anchor load-displacement response: adhesive type, strength of the masonry materials (brick and mortar), anchor embedment depth, anchor rod diameter, overburden level, anchor rod type, quality of installation and the use of metal foil sleeve. In addition, the comparative performance of bent anchors (installed at an angle of minimum 22.5o to the perpendicular projection from the wall surface) and anchors positioned horizontally was investigated. Observations on the performance of wall-to-diaphragm connections in the 2010/2011 Canterbury earthquakes and a snapshot of the performed experimental program and the test results are presented herein. http://hdl.handle.net/2292/21050
Earthquake-triggered soil liquefaction caused extensive damage and heavy economic losses in Christchurch during the 2010-2011 Canterbury earthquakes. The most severe manifestations of liquefaction were associated with the presence of natural deposits of clean sands and silty sands of fluvial origin. However, liquefaction resistance of fines-containing sands is commonly inferred from empirical relationships based on clean sands (i.e. sands with less than 5% fines). Hence, existing evaluation methods have poor accuracy when applied to silty sands. The liquefaction behaviour of Christchurch fines-containing (silty) sands is investigated through a series of Direct Simple Shear (DSS) tests. This type of test better resembles earthquake loading conditions in soil deposits compared to cyclic triaxial tests. Soil specimens are reconstituted in the laboratory with the water sedimentation technique. This preparation method yields soil fabrics similar to those encountered in fluvial soil deposits, which are common in the Christchurch area. Test results provide preliminary indications on how void ratio, relative density, preparation method and fines content influence the cyclic liquefaction behaviour of sand-silt mixtures depending on the properties of host sand and silt.
Reinforced concrete buildings that satisfied modern seismic design criteria generally behaved as expected during the recent Canterbury and Kaikoura earthquakes in New Zealand, forming plastic hinges in intended locations. While this meant that life-safety performance objectives were met, widespread demolition and heavy economic losses took place in the aftermath of the earthquakes.The Christchurch central business district was particularly hard hit, with over 60% of the multistorey reinforced concrete buildings being demolished. A lack of knowledge on the post-earthquake residual capacity of reinforced concrete buildings was a contributing factor to the mass demolition.Many aspects related to the assessment of earthquake-damaged reinforced concrete buildings require further research. This thesis focusses on improving the state of knowledge on the post earthquakeresidual capacity and reparability of moderately damaged plastic hinges, with an emphasis on plastic hinges typical of modern moment frame structures. The repair method focussed on is epoxy injection of cracks and patching of spalled concrete. A targeted test program on seventeen nominally identical large-scale ductile reinforced concrete beams, three of which were repaired by epoxy injection following initial damaging loadings, was conducted to support these objectives. Test variables included the loading protocol, the loading rate, and the level of restraint to axial elongation.The information that can be gleaned from post-earthquake damage surveys is investigated. It is shown that residual crack widths are dependent on residual deformations, and are not necessarily indicative of the maximum rotation demands or the plastic hinge residual capacity. The implications of various other types of damage typical of beam and column plastic hinges are also discussed.Experimental data are used to demonstrate that the strength and deformation capacity of plastic hinges with modern seismic detailing are often unreduced as a result of moderate earthquake induced damage, albeit with certain exceptions. Special attention is given to the effects of prior yielding of the longitudinal reinforcement, accounting for the low-cycle fatigue and strain ageing phenomena. A material-level testing program on the low-cycle fatigue behaviour of grade 300E reinforcing steel was conducted to supplement the data available in the literature.A reduction in stiffness, relative to the initial secant stiffness to yield, occurs due to moderate plastic hinging damage. This reduction in stiffness is shown to be correlated with the ductility demand,and a proposed model gives a conservative lower-bound estimate of the residual stiffness following an arbitrary earthquake-type loading. Repair by epoxy injection is shown to be effective in restoring the majority of stiffness to plastic hinges in beams. Epoxy injection is also shown to have implications for the residual strength and elongation characteristics of repaired plastic hinges.
High demolition rates were observed in New Zealand after the 2010-2011 Canterbury Earthquake Sequence despite the success of modern seismic design standards to achieve required performance objectives such as life safety and collapse prevention. Approximately 60% of the multi-storey reinforced concrete (RC) buildings in the Christchurch Central Business District were demolished after these earthquakes, even when only minor structural damage was present. Several factors influenced the decision of demolition instead of repair, one of them being the uncertainty of the seismic capacity of a damaged structure. To provide more insight into this topic, the investigation conducted in this thesis evaluated the residual capacity of moderately damaged RC walls and the effectiveness of repair techniques to restore the seismic performance of heavily damaged RC walls. The research outcome provided insights for developing guidelines for post-earthquake assessment of earthquake-damaged RC structures. The methodology used to conduct the investigation was through an experimental program divided into two phases. During the first phase, two walls were subjected to different types of pre-cyclic loading to represent the damaged condition from a prior earthquake, and a third wall represented a repair scenario with the damaged wall being repaired using epoxy injection and repair mortar after the pre-cyclic loading. Comparisons of these test walls to a control undamaged wall identified significant reductions in the stiffness of the damaged walls and a partial recovery in the wall stiffness achieved following epoxy injection. Visual damage that included distributed horizontal and diagonal cracks and spalling of the cover concrete did not affect the residual strength or displacement capacity of the walls. However, evidence of buckling of the longitudinal reinforcement during the pre-cyclic loading resulted in a slight reduction in strength recovery and a significant reduction in the displacement capacity of the damaged walls. Additional experimental programs from the literature were used to provide recommendations for modelling the response of moderately damaged RC walls and to identify a threshold that represented a potential reduction in the residual strength and displacement capacity of damaged RC walls in future earthquakes. The second phase of the experimental program conducted in this thesis addressed the replacement of concrete and reinforcing steel as repair techniques for heavily damaged RC walls. Two walls were repaired by replacing the damaged concrete and using welded connections to connect new reinforcing bars with existing bars. Different locations of the welded connections were investigated in the repaired walls to study the impact of these discontinuities at the critical section. No significant changes were observed in the stiffness, strength, and displacement capacity of the repaired walls compared to the benchmark undamaged wall. Differences in the local behaviour at the critical section were observed in one of the walls but did not impact the global response. The results of these two repaired walls were combined with other experimental programs found in the literature to assemble a database of repaired RC walls. Qualitative and quantitative analyses identified trends across various parameters, including wall types, damage before repair, and repair techniques implemented. The primary outcome of the database analysis was recommendations for concrete and reinforcing steel replacement to restore the strength and displacement capacity of heavily damaged RC walls.
The city of Christchurch, New Zealand, incurred significant damage due to a series of earthquakes in 2010 and 2011. The city had, by the late 2010s, regained economic and social normalcy after a sustained period of rebuilding and economic recovery. Through the concerted rebuilding effort, a modern central business district (CBD) with redesigned infrastructure and amenities was developed. The Christchurch rebuild was underpinned by a commitment of urban planners to an open and connected city, including the use of innovative technologies to gather, use and share data. As was the case elsewhere, the COVID-19 pandemic brought about significant disruptions to social and economic life in Christchurch. Border closures, lockdowns, trading limitations and other restrictions on movement led to changes in traditional consumer behaviors and affected the retail sector’s resilience. In this study, we used CBD pedestrian traffic data gathered from various locations to predict changes in retail spending and identify recovery implications through the lens of retail resilience. We found that the COVID-19 pandemic and its related lockdowns have driven a substantive change in the behavioral patterns of city users. The implications for resilient retail, sustainable policy and further research are explored.
The greater Wellington region, New Zealand, is highly vulnerable to large earthquakes. While attention has been paid to the consequences of earthquake damage to road, electricity and water supply networks, the consequences of wastewater network damage for public health, environmental health and habitability of homes remain largely unknown for Wellington City. The Canterbury and Kaikōura earthquakes have highlighted the vulnerability of sewerage systems to disruption during a disaster. Management of human waste is one of the critical components of disaster planning to reduce faecal-oral transmission of disease and exposure to disease-bearing vectors. In Canterbury and Kaikōura, emergency sanitation involved a combination of Port-a-loos, chemical toilets and backyard long-drops. While many lessons may be learned from experiences in Canterbury earthquakes, it is important to note that isolation is likely to be a much greater factor for Wellington households, compared to Christchurch, due to the potential for widespread landslides in hill suburbs affecting road access. This in turn implies that human waste may have to be managed onsite, as options such as chemical toilets and Port-a-loos rely completely on road access for delivering chemicals and collecting waste. While some progress has been made on options such as emergency composting toilets, significant knowledge gaps remain on how to safely manage waste onsite. In order to bridge these gaps, laboratory tests will be conducted through the second half of 2019 to assess the pathogen die-off rates in the composting toilet system with variables being the type of carbon bulking material and the addition of a Bokashi composting activator.
Study region: Christchurch, New Zealand. Study focus: Low-lying coastal cities worldwide are vulnerable to shallow groundwater salinization caused by saltwater intrusion and anthropogenic activities. Shallow groundwater salinization can have cascading negative impacts on municipal assets, but this is rarely considered compared to impacts of salinization on water supply. Here, shallow groundwater salinity was sampled at high spatial resolution (1.3 piezometer/km²), then mapped and spatially interpolated. This was possible due to a uniquely extensive set of shallow piezometers installed in response to the 2010–11 Canterbury Earthquake Sequence to assess liquefaction risk. The municipal assets located within the brackish groundwater areas were highlighted. New hydrological insights for the region: Brackish groundwater areas were centred on a spit of coastal sand dunes and inside the meander of a tidal river with poorly drained soils. The municipal assets located within these areas include: (i) wastewater and stormwater pipes constructed from steel-reinforced concrete, which, if damaged, are vulnerable to premature failure when exposed to chloride underwater, and (ii) 41 parks and reserves totalling 236 ha, within which salt-intolerant groundwater-dependent species are at risk. This research highlights the importance of determining areas of saline shallow groundwater in low-lying coastal urban settings and the co-located municipal assets to allow the prioritisation of sites for future monitoring and management.
This thesis presents an assessment of historic seismic performance of the New Zealand stopbank network from the 1968 Inangahua earthquake through to the 2016 Kaikōura earthquake. An overview of the types of stopbanks and the main aspects of the design and construction of earthen stopbanks was presented. Stopbanks are structures that are widely used on the banks of rivers and other water bodies to protect against the impact of flood events. Earthen stopbanks are found to be the most used for such protection measures. Different stopbank damage or failure modes that may occur due to flooding or earthquake excitation were assessed with a focus on past earthquakes internationally, and examples of these damage and failure modes were presented. Stopbank damage and assessment reports were collated from available reconnaissance literature to develop the first geospatial database of stopbank damage observed in past earthquakes in New Zealand. Damage was observed in four earthquakes over the past 50 years, with a number of earthquakes resulting in no stopbank damage. The damage database therefore focussed on the Edgecumbe, Darfield, Christchurch and Kaikōura earthquakes. Cracking of the crest and liquefaction-induced settlement were the most common forms of damage observed. To understand the seismic demand on the stopbank network in past earthquakes, geospatial analyses were undertaken to approximate the peak ground acceleration (PGA) across the stopbank network for ten large earthquakes that have occurred in New Zealand over the past 50 years. The relationship between the demand, represented by the peak ground acceleration (PGA) and damage is discussed and key trends identified. Comparison of the seismic demand and the distribution of damage suggested that the seismic performance of the New Zealand stopbank network has been generally good across all events considered. Although a significant length of the stopbank networks were exposed to high levels of shaking in past events, the overall damage length was a small percentage of this. The key aspect controlling performance was the performance of the underlying foundation soils and the effect of this on the stopbank structure and stability.
Prior to the devastating 2010 and 2011 earthquakes, parts of the CBD of Christchurch, New Zealand were undergoing revitalisation incorporating aspects of adaptive reuse and gentrification. Such areas were often characterised by a variety of bars, restaurants, and retail outlets of an “alternative” or “bohemian” style. These early 20th century buildings also exhibited relatively low rents and a somewhat chaotic and loosely planned property development approach by small scale developers. Almost all of these buildings were demolished following the earthquakes and a cordon placed around the CBD for several years. A paper presented at the ERES conference in 2013 presented preliminary results, from observation of post-earthquake public meetings and interviews with displaced CBD retailers. This paper highlighted a strongly held fear that the rebuild of the central city, then about to begin, would result in a very different style and cost structure from that which previously existed. As a result, permanent exclusion from the CBD of the types of businesses that previously characterised the successfully revitalised areas would occur. Five years further on, new CBD retail and office buildings have been constructed, but large areas of land between them remain vacant and the new buildings completed are often having difficulty attracting tenants. This paper reports on the further development of this long-term Christchurch case study and examines if the earlier predictions of the displaced retailers are coming true, in that a new CBD that largely mimics a suburban mall in style and tenancy mix, inherently loses some of its competitive advantage?
This thesis investigates life-safety risk in earthquakes. The first component of the thesis utilises a dataset of earthquake injuries and deaths from recent earthquakes in New Zealand to identify cause, context, and risk factors of injury and death in the 2011 MW6.3 Christchurch earthquake and 2016 MW7.8 Kaikōura earthquake. Results show that nearly all deaths occurred from being hit by structural elements from buildings, while most injuries were caused by falls, strains and being hit by contents or non-structural elements. Statistical analysis of injured cases compared to an uninjured control group found that age, gender, building damage, shaking intensity, and behaviour during shaking were the most significant risk factors for injury during these earthquakes. The second part of the thesis uses the empirical findings from the first section to develop two tools for managing life-safety risk in earthquakes. The first tool is a casualty estimation model for health system and emergency response planning. An existing casualty model used in New Zealand was validated against observed data from the 2011 Christchurch earthquake and found to underestimate moderate and severe injuries by an order of magnitude. The model was then updated to include human behaviour such as protective actions, falls and strain type injuries that are dependent on shaking intensity, as well as injuries and deaths outside buildings. These improvements resulted in a closer fit to observed casualties for the 2011 Christchurch earthquake. The second tool that was developed is a framework to set seismic loading standards for design based on fatality risk targets. The proposed framework extends the risk-targeted hazard method, by moving beyond collapse risk targets, to fatality risk targets for individuals in buildings and societal risk in cities. The framework also includes treatment of epistemic uncertainty in seismic hazard to allow this uncertainty to be used in risk-based decision making. The framework is demonstrated by showing how the current New Zealand loading standards could be revised to achieve uniform life-safety risk across the country and how the introduction of a new loading factor can reduce risk aggregation in cities. Not on Alma, moved and emailed. 1/02/2023 ce
Tree mortality is a fundamental process governing forest dynamics, but understanding tree mortality patterns is challenging because large, long-term datasets are required. Describing size-specific mortality patterns can be especially difficult, due to few trees in larger size classes. We used permanent plot data from Nothofagus solandri var. cliffortioides (mountain beech) forest on the eastern slopes of the Southern Alps, New Zealand, where the fates of trees on 250 plots of 0.04 ha were followed, to examine: (1) patterns of size-specific mortality over three consecutive periods spanning 30 years, each characterised by different disturbance, and (2) the strength and direction of neighbourhood crowding effects on sizespecific mortality rates. We found that the size-specific mortality function was U-shaped over the 30-year period as well as within two shorter periods characterised by small-scale pinhole beetle and windthrow disturbance. During a third period, characterised by earthquake disturbance, tree mortality was less size dependent. Small trees (,20 cm in diameter) were more likely to die, in all three periods, if surrounded by a high basal area of larger neighbours, suggesting that sizeasymmetric competition for light was a major cause of mortality. In contrast, large trees ($20 cm in diameter) were more likely to die in the first period if they had few neighbours, indicating that positive crowding effects were sometimes important for survival of large trees. Overall our results suggest that temporal variability in size-specific mortality patterns, and positive interactions between large trees, may sometimes need to be incorporated into models of forest dynamics.
Disasters are often followed by a large-scale stimulus supporting the economy through the built environment, which can last years. During this time, official economic indicators tend to suggest the economy is doing well, but as activity winds down, the sentiment can quickly change. In response to the damaging 2011 earthquakes in Canterbury, New Zealand, the regional economy outpaced national economic growth rates for several years during the rebuild. The repair work on the built environment created years of elevated building activity. However, after the peak of the rebuilding activity, as economic and employment growth retracts below national growth, we are left with the question of how the underlying economy performs during large scale stimulus activity in the built environment. This paper assesses the performance of the underlying economy by quantifying the usual, demand-driven level of building activity at this time. Applying an Input–Output approach and excluding the economic benefit gained from the investment stimulus reveals the performance of the underlying economy. The results reveal a strong growing underlying economy, and while convergence was expected as the stimulus slowed down, the results found that growth had already crossed over for some time. The results reveal that the investment stimulus provides an initial 1.5% to 2% growth buffer from the underlying economy before the growth rates cross over. This supports short-term economic recovery and enables the underlying economy to transition away from a significant rebuild stimulus. Once the growth crosses over, five years after the disaster, economic growth in the underlying economy remains buoyant even if official regional economic data suggest otherwise.
Numerous studies have shown that urban soils can contain elevated concentrations of heavy metals (HMs). Christchurch, New Zealand, is a relatively young city (150 years old) with a population of 390,000. Most soils in Christchurch are sub-urban, with food production in residential gardens a popular activity. Earthquakes in 2010 and 2011 have resulted in the re-zoning of 630 ha of Christchurch, with suggestions that some of this land could be used for community gardens. We aimed to determine the HM concentrations in a selection of suburban gardens in Christchurch as well as in soils identified as being at risk of HM contamination due to hazardous former land uses or nearby activities. Heavy metal concentrations in suburban Christchurch garden soils were higher than normal background soil concentrations. Some 46% of the urban garden samples had Pb concentrations higher than the residential land use national standard of 210 mg kg⁻¹, with the most contaminated soil containing 2615 mg kg⁻¹ Pb. Concentrations of As and Zn exceeded the residential land use national standards (20 mg kg⁻¹ As and 400 mg kg⁻¹ Zn) in 20% of the soils. Older neighbourhoods had significantly higher soil HM concentrations than younger neighbourhoods. Neighbourhoods developed pre-1950s had a mean Pb concentration of 282 mg kg⁻¹ in their garden soils. Soil HM concentrations should be key criteria when determining the future land use of former residential areas that have been demolished because of the earthquakes in 2010 and 2011. Redeveloping these areas as parklands or forests would result in less human HM exposure than agriculture or community gardens where food is produced and bare soil is exposed.
We examined the stratigraphy of alluvial fans formed at the steep range front of the Southern Alps at Te Taho, on the north bank of the Whataroa River in central West Coast, South Island, New Zealand. The range front coincides with the Alpine Fault, an Australian-Pacific plate boundary fault, which produces regular earthquakes. Our study of range front fans revealed aggradation at 100- to 300-year intervals. Radiocarbon ages and soil residence times (SRTs) estimated by a quantitative profile development index allowed us to elucidate the characteristics of four episodes of aggradation since 1000 CE. We postulate a repeating mode of fan behaviour (fan response cycle [FRC]) linked to earthquake cycles via earthquake-triggered landslides. FRCs are characterised by short response time (aggradation followed by incision) and a long phase when channels are entrenched and fan surfaces are stable (persistence time). Currently, the Te Taho and Whataroa River fans are in the latter phase. The four episodes of fan building we determined from an OxCal sequence model correlate to Alpine Fault earthquakes (or other subsidiary events) and support prior landscape evolution studies indicating ≥M7.5 earthquakes as the main driver of episodic sedimentation. Our findings are consistent with other historic non-earthquake events on the West Coast but indicate faster responses than other earthquake sites in New Zealand and elsewhere where rainfall and stream gradients (the basis for stream power) are lower. Judging from the thickness of fan deposits and the short response times, we conclude that pastoral farming (current land-use) on the fans and probably across much of the Whataroa River fan would be impossible for several decades after a major earthquake. The sustainability of regional tourism and agriculture is at risk, more so because of the vulnerability of the single through road in the region (State Highway 6).
A city’s planted trees, the great majority of which are in private gardens, play a fundamental role in shaping a city’s wild ecology, ecosystem functioning, and ecosystem services. However, studying tree diversity across a city’s many thousands of separate private gardens is logistically challenging. After the disastrous 2010–2011 earthquakes in Christchurch, New Zealand, over 7,000 homes were abandoned and a botanical survey of these gardens was contracted by the Government’s Canterbury Earthquake Recovery Authority (CERA) prior to buildings being demolished. This unprecedented access to private gardens across the 443.9 hectares ‘Residential Red Zone’ area of eastern Christchurch is a unique opportunity to explore the composition of trees in private gardens across a large area of a New Zealand city. We analysed these survey data to describe the effects of housing age, socio-economics, human population density, and general soil quality, on tree abundance, species richness, and the proportion of indigenous and exotic species. We found that while most of the tree species were exotic, about half of the individual trees were local native species. There is an increasing realisation of the native tree species values among Christchurch citizens and gardens in more recent areas of housing had a higher proportion of smaller/younger native trees. However, the same sites had proportionately more exotic trees, by species and individuals, amongst their larger planted trees than older areas of housing. The majority of the species, and individuals, of the larger (≥10 cm DBH) trees planted in gardens still tend to be exotic species. In newer suburbs, gardens in wealthy areas had more native trees than gardens from poorer areas, while in older suburbs, poorer areas had more native big trees than wealthy areas. In combination, these describe, in detail unparalleled for at least in New Zealand, how the tree infrastructure of the city varies in space and time. This lays the groundwork for better understanding of how wildlife distribution and abundance, wild plant regeneration, and ecosystem services, are affected by the city’s trees.
Natural hazards continue to have adverse effects on communities and households worldwide, accelerating research on proactively identifying and enhancing characteristics associated with resilience. Although resilience is often characterized as a return to normal, recent studies of postdisaster recovery have highlighted the ways in which new opportunities can emerge following disruption, challenging the status quo. Conversely, recovery and reconstruction may serve to reinforce preexisting social, institutional, and development pathways. Our understanding of these dynamics is limited however by the small number of practice examples, particularly for rural communities in developed nations. This study uses a social–ecological inventory to document the drivers, pathways, and mechanisms of resilience following a large-magnitude earthquake in Kaikōura, a coastal community in Aotearoa New Zealand. As part of the planning and implementation phase of a multiyear project, we used the tool as the basis for indepth and contextually sensitive analysis of rural resilience. Moreover, the deliberate application of social–ecological inventory was the first step in the research team reengaging with the community following the event. The inventory process provided an opportunity for research partners to share their stories and experiences and develop a shared understanding of changes that had taken place in the community. Results provide empirical insight into reactions to disruptive change associated with disasters. The inventory also informed the design of targeted research collaborations, established a platform for longer-term community engagement, and provides a baseline for assessing longitudinal changes in key resilience-related characteristics and community capacities. Findings suggest the utility of social–ecological inventory goes beyond natural resource management, and that it may be appropriate in a range of contexts where institutional, social, and economic restructuring have developed out of necessity in response to felt or anticipated external stressors.
The Screw Driving Sounding (SDS) method developed in Japan is a relatively new insitu testing technique to characterise soft shallow sites, typically those required for residential house construction. An SDS machine drills a rod into the ground in several loading steps while the rod is continuously rotated. Several parameters, such as torque, load and speed of penetration, are recorded at every rotation of the rod. The SDS method has been introduced in New Zealand, and the results of its application for characterising local sites are discussed in this study. A total of 164 SDS tests were conducted in Christchurch, Wellington and Auckland to validate/adjust the methodologies originally developed based on the Japanese practice. Most of the tests were conducted at sites where cone penetration tests (CPT), standard penetration tests (SPT) and borehole logs were available; the comparison of SDS results with existing information showed that the SDS method has great potential as an in-situ testing method for classifying the soils. By compiling the SDS data from 3 different cities and comparing them with the borehole logs, a soil classification chart was generated for identifying the soil type based on SDS parameters. Also, a correlation between fines content and SDS parameters was developed and a procedure for estimating angle of internal friction of sand using SDS parameters was investigated. Furthermore, a correlation was made between the tip resistance of the CPT and the SDS data for different percentages of fines content. The relationship between the SPT N value and a SDS parameter was also proposed. This thesis also presents a methodology for identifying the liquefiable layers of soil using SDS data. SDS tests were performed in both liquefied and non-liquefied areas in Christchurch to find a representative parameter and relationship for predicting the liquefaction potential of soil. Plots were drawn of the cyclic shear stress ratios (CSR) induced by the earthquakes and the corresponding energy of penetration during SDS tests. By identifying liquefied or unliquefied layers using three different popular CPT-based methods, boundary lines corresponding to the various probabilities of liquefaction happening were developed for different ranges of fines contents using logistic regression analysis, these could then be used for estimating the liquefaction potential of soil directly from the SDS data. Finally, the drilling process involved in screw driving sounding was simulated using Abaqus software. Analysis results proved that the model successfully captured the drilling process of the SDS machine in sand. In addition, a chart to predict peak friction angles of sandy sites based on measured SDS parameters for various vertical effective stresses was formulated. As a simple, fast and economical test, the SDS method can be a reliable alternative insitu test for soil and site characterisation, especially for residential house construction.
On 14 November 2016, a magnitude (Mw) 7.8 earthquake struck the small coastal settlement of Kaikōura, Aotearoa-New Zealand. With an economy based on tourism, agriculture, and fishing, Kaikōura was immediately faced with significant logistical, economic, and social challenges caused by damage to critical infrastructure and lifelines, essential to its main industries. Massive landslips cut offroad and rail access, stranding hundreds of tourists, and halting the collection, processing and distribution of agricultural products. At the coast, the seabed rose two metres, limiting harbour-access to high tide, with implications for whale watching tours and commercial fisheries. Throughout the region there was significant damage to homes, businesses, and farmland, leaving owners and residents facing an uncertain future. This paper uses qualitative case study analysis to explore post-quake transformations in a rural context. The aim is to gain insight into the distinctive dynamics of disaster response mechanisms, focusing on two initiatives that have emerged in direct response to the disaster. The first examines the ways in which agriculture, food harvesting, production and distribution are being reimagined with the potential to enhance regional food security. The second examines the rescaling of power in decision-making processes following the disaster, specifically examining the ways in which rural actors are leveraging networks to meet their needs and the consequences of that repositioning on rural (and national) governance arrangements. In these and other ways, the local economy is being revitalised, and regional resilience enhanced through diversification, capitalising not on the disaster but the region's natural, social, and cultural capital. Drawing on insights and experience of local stakeholders, policy- and decision-makers, and community representatives we highlight the diverse ways in which these endeavours are an attempt to create something new, revealing also the barriers which needed to be overcome to reshape local livelihoods. Results reveal that the process of transformation as part of rural recovery must be grounded in the lived reality of local residents and their understanding of place, incorporating and building on regional social, environmental, and economic characteristics. In this, the need to respond rapidly to realise opportunities must be balanced with the community-centric approach, with greater recognition given to the contested nature of the decisions to be made. Insights from the case examples can inform preparedness and recovery planning elsewhere, and provide a rich, real-time example of the ways in which disasters can create opportunities for reimagining resilient futures.
A video of a presentation by Professor David Johnston during the fourth plenary of the 2016 People in Disasters Conference. Johnston is a Senior Scientist at GNS Science and Director of the Joint Centre for Disaster Research in the School of Psychology at Massey University. The presentation is titled, "Understanding Immediate Human Behaviour to the 2010-2011 Canterbury Earthquake Sequence, Implications for injury prevention and risk communication".The abstract for the presentation reads as follows: The 2010 and 2011 Canterbury earthquake sequences have given us a unique opportunity to better understand human behaviour during and immediately after an earthquake. On 4 September 2010, a magnitude 7.1 earthquake occurred near Darfield in the Canterbury region of New Zealand. There were no deaths, but several thousand people sustained injuries and sought medical assistance. Less than 6 months later, a magnitude 6.2 earthquake occurred under Christchurch City at 12:51 p.m. on 22 February 2011. A total of 182 people were killed in the first 24 hours and over 7,000 people injured overall. To reduce earthquake casualties in future events, it is important to understand how people behaved during and immediately after the shaking, and how their behaviour exposed them to risk of death or injury. Most previous studies have relied on an analysis of medical records and/or reflective interviews and questionnaire studies. In Canterbury we were able to combine a range of methods to explore earthquake shaking behaviours and the causes of injuries. In New Zealand, the Accident Compensation Corporation (a national health payment scheme run by the government) allowed researchers to access injury data from over 9,500 people from the Darfield (4 September 2010) and Christchurch (22 February 2011 ) earthquakes. The total injury burden was analysed for demography, context of injury, causes of injury, and injury type. From the injury data inferences into human behaviour were derived. We were able to classify the injury context as direct (immediate shaking of the primary earthquake or aftershocks causing unavoidable injuries), and secondary (cause of injury after shaking ceased). A second study examined people's immediate responses to earthquakes in Christchurch New Zealand and compared responses to the 2011 earthquake in Hitachi, Japan. A further study has developed a systematic process and coding scheme to analyse earthquake video footage of human behaviour during strong earthquake shaking. From these studies a number of recommendations for injury prevention and risk communication can be made. In general, improved building codes, strengthening buildings, and securing fittings will reduce future earthquake deaths and injuries. However, the high rate of injuries incurred from undertaking an inappropriate action (e.g. moving around) during or immediately after an earthquake suggests that further education is needed to promote appropriate actions during and after earthquakes. In New Zealand - as in US and worldwide - public education efforts such as the 'Shakeout' exercise are trying to address the behavioural aspects of injury prevention.