Search

found 6 results

Videos, UC QuakeStudies

A video of an interview with landscape architect Di Lucas, about her vision for the Christchurch rebuild. Lucas talks about the need to build light buildings by using light materials such as timber. The video is part of The Press's 'Christchurch, one year after February 22, 2011' series.

Research papers, University of Canterbury Library

The seismic response of unreinforced masonry (URM) buildings, in both their as-built or retrofitted configuration, is strongly dependent on the characteristics of wooden floors and, in particular, on their in-plane stiffness and on the quality of wall-to-floor connections. As part of the development of alternative performance-based retrofit strategies for URM buildings, experimental research has been carried out by the authors at the University of Canterbury, in order to distinguish the different elements contributing to the whole diaphragm's stiffness. The results have been compared to the ones predicted through the use of international guidelines in order to highlight shortcomings and qualities and to propose a simplified formulation for the evaluation of the stiffness properties.

Images, UC QuakeStudies

The top of the water slides in the QEII swimming pool, exposed by its demolition. The slides themselves have been broken off, leaving only the entry points. The photographer comments, "After assessment of the damage caused by the numerous earthquakes in Christchurch, New Zealand they decided to demolish the QEII stadium and it's swimming pool".

Research papers, University of Canterbury Library

Drywalls are the typical infill or partitions used in new structures. They are usually located within structural frames and/or between upper and lower floor slabs in buildings. Due to the materials used in their construction, unlike masonry blocks, they can be considered as light non-structural infill/partition walls. These types of walls are especially popular in New Zealand and the USA. In spite of their popularity, little is known about their in-plane cyclic behaviour when infilled within a structural frame. The cause of this lack of knowledge can be attributed to the typical assumption that they are weak non-structural elements and are not expected to interact with the surrounding structural system significantly. However, recent earthquakes have repeatedly shown that drywalls interact with the structure and suffer severe damage at very low drift levels. In this paper, experimental test results of two typical drywall types (steel and timber framed) are reported in order to gather further information on; i) their reverse cyclic behaviour, ii) inter-storey drift levels at which they suffer different levels of damage, iii) the level of interaction with the surrounding structural frame system. The drywall specimens were tested using quasi-static reverse cyclic testing protocols within a full scale precast RC frame at the Structures Laboratory of the University of Canterbury.

Research papers, University of Canterbury Library

Earthquake Engineering is facing an extraordinarily challenging era, the ultimate target being set at increasingly higher levels by the demanding expectations of our modern society. The renewed challenge is to be able to provide low-cost, thus more widely affordable, high-seismic-performance structures capable of sustaining a design level earthquake with limited or negligible damage, minimum disruption of business (downtime) or, in more general terms, controllable socio-economical losses. The Canterbury earthquakes sequence in 2010-2011 has represented a tough reality check, confirming the current mismatch between societal expectations over the reality of seismic performance of modern buildings. In general, albeit with some unfortunate exceptions, modern multi-storey buildings performed as expected from a technical point of view, in particular when considering the intensity of the shaking (higher than new code design) they were subjected to. As per capacity design principles, plastic hinges formed in discrete regions, allowing the buildings to sway and stand and people to evacuate. Nevertheless, in many cases, these buildings were deemed too expensive to be repaired and were consequently demolished. Targeting life-safety is arguably not enough for our modern society, at least when dealing with new building construction. A paradigm shift towards damage-control design philosophy and technologies is urgently required. This paper and the associated presentation will discuss motivations, issues and, more importantly, cost-effective engineering solutions to design buildings capable of sustaining low-level of damage and thus limited business interruption after a design level earthquake. Focus will be given to the extensive research and developments in jointed ductile connections based upon controlled rocking & dissipating mechanisms for either reinforced concrete and, more recently, laminated timber structures. An overview of recent on-site applications of such systems, featuring some of the latest technical solutions developed in the laboratory and including proposals for the rebuild of Christchurch, will be provided as successful examples of practical implementation of performance-based seismic design theory and technology.