Search

found 76 results

Images, UC QuakeStudies

A photograph of Mike Hewson's artwork, 'Deconstruction', on the walkway between Ballantyne's and the former bus exchange building. The photograph is taken from an angle such that the artwork gives the illusion that the walkway is transparent.

Images, UC QuakeStudies

A residential property in Bexley has an offensive message spray-painted on the garage door warning off intruders. The photographer comments, "Today I took a drive around the residential area between Bexley and New Brighton. It was a stark reminder to be thankful for the situation we're in and perhaps not complain too much that our garden wall hasn't yet been rebuilt ... Saddest of all are the messages that have been scrawled on walls and garage doors by departing locals. At one end of the scale, thanking the family home for the memories, and at the other end of the scale cursing the looters which have made a bad situation that much more unbearable".

Images, UC QuakeStudies

An aerial photograph of Cambridge Terrace with the cleared PGC site in the upper centre. The photograph was captioned by BeckerFraserPhotos, "The area inside the cordon that is north of the river which encompasses the PGC site and Kilmore Street. The expectation is that this area will soon be outside the cordon".

Images, UC QuakeStudies

A residential property in Bexley with an overgrown garden. A spray-painted message on the wall of the house reads, "Thanks 4 the memories, 1997-2012, kia kaha". The photographer comments, "Today I took a drive around the residential area between Bexley and New Brighton. It was a stark reminder to be thankful for the situation we're in and perhaps not complain too much that our garden wall hasn't yet been rebuilt ... Saddest of all are the messages that have been scrawled on walls and garage doors by departing locals. At one end of the scale, thanking the family home for the memories, and at the other end of the scale cursing the looters which have made a bad situation that much more unbearable".

Research papers, The University of Auckland Library

Whole document is available to authenticated members of The University of Auckland until Feb. 2014. The increasing scale of losses from earthquake disasters has reinforced the need for property owners to become proactive in seismic risk reduction programs. However, despite advancement in seismic design methods and legislative frameworks, building owners are often reluctant to adopt mitigation measures required to reduce earthquake losses. The magnitude of building collapses from the recent Christchurch earthquakes in New Zealand shows that owners of earthquake prone buildings (EPBs) are not adopting appropriate risk mitigation measures in their buildings. Owners of EPBs are found unwilling or lack motivation to adopt adequate mitigation measures that will reduce their vulnerability to seismic risks. This research investigates how to increase the likelihood of building owners undertaking appropriate mitigation actions that will reduce their vulnerability to earthquake disaster. A sequential two-phase mixed methods approach was adopted for the research investigation. Multiple case studies approach was adopted in the first qualitative phase, followed by the second quantitative research phase that includes the development and testing of a framework. The research findings reveal four categories of critical obstacles to building owners‘ decision to adopt earthquake loss prevention measures. These obstacles include perception, sociological, economic and institutional impediments. Intrinsic and extrinsic interventions are proposed as incentives for overcoming these barriers. The intrinsic motivators include using information communication networks such as mass media, policy entrepreneurs and community engagement in risk mitigation. Extrinsic motivators comprise the use of four groups of incentives namely; financial, regulatory, technological and property market incentives. These intrinsic and extrinsic interventions are essential for enhancing property owners‘ decisions to voluntarily adopt appropriate earthquake mitigation measures. The study concludes by providing specific recommendations that earthquake risk mitigation managers, city councils and stakeholders involved in risk mitigation in New Zealand and other seismic risk vulnerable countries could consider in earthquake risk management. Local authorities could adopt the framework developed in this study to demonstrate a combination of incentives and motivators that yield best-valued outcomes. Consequently, actions can be more specific and outcomes more effective. The implementation of these recommendations could offer greater reasons for the stakeholders and public to invest in building New Zealand‘s built environment resilience to earthquake disasters.

Research papers, The University of Auckland Library

It is well known that buildings constructed using unreinforced masonry (URM) are susceptible to damage from earthquake induced lateral forces that may result in partial or full building collapse. The 2010/2011 Canterbury earthquakes are the most recent New Zealand example of destructive earthquakes, which have drawn people's attention to the inherent seismic weaknesses of URM buildings and anchored masonry veneer systems in New Zealand. A brief review of the data collected following the 2010 Darfield earthquake and more comprehensive documentation of data that was collected following the 2011 Christchurch earthquake is presented, along with the findings from subsequent data interrogation. Large stocks of earthquake prone vintage URM buildings that remain in New Zealand and in other seismically active parts of the world result in the need for minimally invasive and cost effective seismic retrofit techniques. The principal objective of the doctoral research reported herein was to investigate the applicability of near surface mounted (NSM) carbon fibre reinforced polymer (CFRP) strips as a seismic improvement technique. A comprehensive experimental program consisting of 53 pull tests is presented and is used to assess the accuracy of existing FRP-to-masonry bond models, with a modified model being proposed. The strength characteristics of vintage clay brick URM wall panels from two existing URM buildings was established and used as a benchmark when manufacturing replica clay brick test assemblages. The applicability of using NSM CFRP strips as a retrofitting technique for improving the shear strength and the ductility capacity of multi-leaf URM walls constructed using solid clay brick masonry is investigated by varying CFRP reinforcement ratios. Lastly, an experimental program was undertaken to validate the proposed design methodology for improving the strength capacity of URM walls. The program involved testing full-scale walls in a laboratory setting and testing full-scale walls in-situ in existing vintage URM buildings. Experimental test results illustrated that the NSM CFRP technique is an effective method to seismically strengthen URM buildings.

Images, UC QuakeStudies

People walk down the newly re-opened Colombo Street. In the distance, Mike Hewson's installation "Deconstruction" can be seen on the walkway between Ballantynes and The Crossing. This artwork gives the illusion that the walkway has been removed.

Images, UC QuakeStudies

People walk down the newly re-opened Colombo Street. In the distance, Mike Hewson's installation "Deconstruction" can be seen on the walkway between Ballantynes and The Crossing. This artwork gives the illusion that the walkway has been removed.

Images, UC QuakeStudies

People walk down the newly re-opened Colombo Street. In the distance, Mike Hewson's installation "Deconstruction" can be seen on the walkway between Ballantynes and The Crossing. This artwork gives the illusion that the walkway has been removed.