Search

found 6 results

Research papers, University of Canterbury Library

Results from cyclic undrained direct simple shear tests on reconstituted specimens of two sands from Christchurch are compared against the liquefaction resistance inferred from CPT-based empirical liquefaction triggering methods. Limitations in existing empirical triggering relationships to capture important effects related to processes which originated test soils are highlighted and discussed.

Research papers, University of Canterbury Library

A series of undrained cyclic direct simple shear (DSS) tests on specimens of sandy silty soils are used to evaluate the effects of fines content, fabric and layered structure on the liquefaction response of sandy soils containing non-plastic fines. Test soils originate from shallow deposits in Christchurch, New Zealand, where severe and damaging manifestations of liquefaction occurred during the 2010-2011 Canterbury earthquakes. A procedure for reconstituting specimens by water sedimentation is employed. This specimen preparation technique involves first pluviation of soil through a water column, and then application of gentle vibrations to the mould (tapping) to prepare specimens with different initial densities. This procedure is applied to prepare uniform specimens, and layered specimens with a silt layer atop a sand layer. Cyclic DSS tests are performed on water-sedimented specimens of two sands, a silt, and sand-silt mixtures with different fines contents. Through this testing program, effects of density, time of vibration during preparation, fines content, and layered structure on cyclic behaviour and liquefaction resistance are investigated. Additional information necessary to characterise soil behaviour is provided by particle size distribution analyses, index void ratio testing, and Scanning Electronic Microscope imaging. The results of cyclic DSS tests show that, for all tested soils, specimens vibrated for longer period of time have lower void ratios, higher relative density, and greater liquefaction resistance. One of the tested sands undergoes significant increase in relative density and liquefaction resistance following prolonged vibration. The other sand exhibits lower increase in relative density and in liquefaction resistance when vibrated for the same period of time. Liquefaction resistance of sand-silt mixtures prepared using this latter sand shows a correlation with relative density irrespective of fines content. In general, however, magnitudes of changes in liquefaction resistance for given variations in vibration time, relative density, or void ratio vary depending on soils under consideration. Characterization based on maximum and minimum void ratios indicates that tested soils develop different structures as fines are added to their respective host sands. These structures influence initial specimen density, strains during consolidation, cyclic liquefaction resistance, and undrained cyclic response of each soil. The different structures are the outcome of differences in particle size distributions, average particle sizes, and particle shapes of the two host sands and of the different relationships between these properties and those of the silt. Fines content alone does not provide an effective characterization of the effects of these factors. Monotonic DSS tests are also performed on specimens prepared by water sedimentation, and on specimens prepared by moist tamping, to identify the critical state lines of tested soils. These critical state lines provide the basis for an alternative interpretation of cyclic DSS tests results within the critical state framework. It is shown that test results imply general consistency between observed cyclic and monotonic DSS soil response. The effects of specimen layering are scrutinised by comparing DSS test results for uniform and layered specimens of the same soils. In this case, only a limited number of tests is performed, and the range of densities considered for the layered specimens is also limited. Caution is therefore required in interpretation of their results. The liquefaction resistance of layered specimens appears to be influenced by the bottom sand layer, irrespective of the global fines content of the specimen. The presence of a layered structure does not result in significant differences in terms of liquefaction response with respect to uniform sand specimens. Cyclic triaxial data for Christchurch sandy silty soils available from previous studies are used to comparatively examine the behaviour observed in the tests of this study. The cyclic DSS liquefaction resistance of water-sedimented specimens is consistent with cyclic triaxial tests on undisturbed specimens performed by other investigators. The two data sets result in similar liquefaction triggering relationships for these soils. However, stress-strain response characteristics for the two types of specimens are different, and undisturbed triaxial specimen exhibit a slower rate of increase in shear strains compared to water-sedimented DSS specimens. This could be due to the greater influence of fabric of the undisturbed specimens.

Audio, Radio New Zealand

The Earthquake Commission has settled with a Christchurch homeowner, just days before their test case was due to be heard at the High Court. Jamie Gibling used his KiwiSaver to buy his first family home in New Brighton after the quakes, believing it had been properly repaired. He later learned the repairs were botched and would cost $300,000 to fix. His "onsold" test case was supposed to be heard on Monday to clarify who was liable. But today EQC announced it had reached a settlement with the family and that agreement would provide a framework for the 54 other claimants also with Shine Lawyers. Finance and EQC Minister Grant Robertson last week announced an "onsold" settlement kitty of $300 million for the next 12 months but legal experts working with claimants have told Checkpoint it could cost taxpayers much much more. EQC's Deputy Chief Executive is Renee Walker. On Thursday she came into the studio and Lisa Owen asked her if the Giblings got what they asked for and if the 54 others who signed up to the class action would get the same.

Audio, Radio New Zealand

Tests have revealed that New Zealand's latest building designs will stand up to earthquakes of a greater intensity than the ones that occurred in Christchurch and Kaikōura. Researchers from the University of Auckland and Canterbury, in collaboration with QuakeCoRE and Tongji University in China, built a two-storey concrete building and put it on one of the largest shake tables in the world. All of the building's details were based on existing buildings in Wellington and Christchurch. The project leader is the University of Auckland's Dr Rick Henry. He talks to Guyon Espiner.

Research papers, University of Canterbury Library

The ultimate goal of this study is to develop a model representing the in-plane behaviour of plasterboard ceiling diaphragms, as part of the efforts towards performance-based seismic engineering of low-rise light timber-framed (LTF) residential buildings in New Zealand (NZ). LTF residential buildings in NZ are constructed according to a prescriptive standard – NZS 3604 Timberframed buildings [1]. With regards to seismic resisting systems, LTF buildings constructed to NZS3604 often have irregular bracing arrangements within a floor plane. A damage survey of LTF buildings after the Canterbury earthquake revealed that structural irregularity (irregular bracing arrangement within a plane) significantly exacerbated the earthquake damage to LTF buildings. When a building has irregular bracing arrangements, the building will have not only translational deflections but also a torsional response in earthquakes. How effectively the induced torsion can be resolved depends on the stiffness of the floors/roof diaphragms. Ceiling and floor diaphragms in LTF buildings in NZ have different construction details from the rest of the world and there appears to be no information available on timber diaphragms typical of NZ practice. This paper presents experimental studies undertaken on plasterboard ceiling diaphragms as typical of NZ residential practice. Based on the test results, a mathematical model simulating the in-plane stiffness of plasterboard ceiling diaphragms was developed, and the developed model has a similar format to that of plasterboard bracing wall elements presented in an accompany paper by Liu [2]. With these two models, three-dimensional non-linear push-over studies of LTF buildings can be undertaken to calculate seismic performance of irregular LTF buildings.

Research papers, University of Canterbury Library

The increase of the world's population located near areas prone to natural disasters has given rise to new ‘mega risks’; the rebuild after disasters will test the governments’ capabilities to provide appropriate responses to protect the people and businesses. During the aftermath of the Christchurch earthquakes (2010-2012) that destroyed much of the inner city, the government of New Zealand set up a new partnership between the public and private sector to rebuild the city’s infrastructure. The new alliance, called SCIRT, used traditional risk management methods in the many construction projects. And, in hindsight, this was seen as one of the causes for some of the unanticipated problems. This study investigated the risk management practices in the post-disaster recovery to produce a specific risk management model that can be used effectively during future post-disaster situations. The aim was to develop a risk management guideline for more integrated risk management and fill the gap that arises when the traditional risk management framework is used in post-disaster situations. The study used the SCIRT alliance as a case study. The findings of the study are based on time and financial data from 100 rebuild projects, and from surveying and interviewing risk management professionals connected to the infrastructure recovery programme. The study focussed on post-disaster risk management in construction as a whole. It took into consideration the changes that happened to the people, the work and the environment due to the disaster. System thinking, and system dynamics techniques have been used due to the complexity of the recovery and to minimise the effect of unforeseen consequences. Based on an extensive literature review, the following methods were used to produce the model. The analytical hierarchical process and the relative importance index have been used to identify the critical risks inside the recovery project. System theory methods and quantitative graph theory have been used to investigate the dynamics of risks between the different management levels. Qualitative comparative analysis has been used to explore the critical success factors. And finally, causal loop diagrams combined with the grounded theory approach has been used to develop the model itself. The study identified that inexperienced staff, low management competency, poor communication, scope uncertainty, and non-alignment of the timing of strategic decisions with schedule demands, were the key risk factors in recovery projects. Among the critical risk groups, it was found that at a strategic management level, financial risks attracted the highest level of interest, as the client needs to secure funding. At both alliance-management and alliance-execution levels, the safety and environmental risks were given top priority due to a combination of high levels of emotional, reputational and media stresses. Risks arising from a lack of resources combined with the high volume of work and the concern that the cost could go out of control, alongside the aforementioned funding issues encouraged the client to create the recovery alliance model with large reputable construction organisations to lock in the recovery cost, at a time when the scope was still uncertain. This study found that building trust between all parties, clearer communication and a constant interactive flow of information, established a more working environment. Competent and clear allocation of risk management responsibilities, cultural shift, risk prioritisation, and staff training were crucial factors. Finally, the post-disaster risk management (PDRM) model can be described as an integrated risk management model that considers how the changes which happened to the environment, the people and their work, caused them to think differently to ease the complexity of the recovery projects. The model should be used as a guideline for recovery systems, especially after an earthquake, looking in detail at all the attributes and the concepts, which influence the risk management for more effective PDRM. The PDRM model is represented in Causal Loops Diagrams (CLD) in Figure 8.31 and based on 10 principles (Figure 8.32) and 26 concepts (Table 8.1) with its attributes.