Search

found 22 results

Videos, UC QuakeStudies

The city centre and Tuahiwi Marae, the home of Ngāi Tūāhuriri, are now linked by names. The Anglican cathedral and Tuahiwi’s church, both called St Stephens, sit on land called Whitireia. Whitireia was the house of Paekia, the ancestor who landed on the North Island on the back of a whale at Tūranga, which is now the name of Christchurch’s city library.

Videos, UC QuakeStudies

Puari is a longstanding fishing area for Ngāi Tūāhuriri. It was claimed by chief Pita Te Hori for the hapū in 1868 but denied by the Crown, because the land had been allocated to settlers. This site is now owned by Ngāi Tahu and a building named after Te Hori stands here.

Videos, UC QuakeStudies

This is where Tuahiwi people fished, eeled and gathered other kaimoana until the waterways were blocked and the land confiscated for public works in 1956. Getting land back in Christchurch was a key part of the Treaty claim lodged in 1986.

Videos, UC QuakeStudies

The name Omeka for the Justice Precinct comes from the Biblical omega. Dating back to the prophecy of Ratana early last century, it is testimony to Ngāi Tahu’s faith that their claims for justice would be settled.

Videos, UC QuakeStudies

The story of the city’s urban marae, Ngā Hau e Whā, built from 1981 onwards, begins in the migration of Māori from their tūrangawaewae to cities. The marae project is linked to a desire among city elders to move Māori out of the city centre to the east.

Research papers, University of Canterbury Library

This research investigates the validation of simulated ground motions on complex structural systems. In this study, the seismic responses of two buildings are compared when they are subjected to as-recorded ground motions and simulated ones. The buildings have been designed based on New Zealand codes and physically constructed in Christchurch, New Zealand. The recorded ground motions are selected from 40 stations database of the historical 22 Feb. 2011 Christchurch earthquake. The Graves and Pitarka (2015) methodology is used to generate the simulated ground motions. The geometric mean of maximum inter-story drift and peak floor acceleration are selected as the main seismic responses. Also, the variation of these parameters due to record to record variability are investigated. Moreover, statistical hypothesis testing is used to investigate the similarity of results between observed and simulated ground motions. The results indicate a general agreement between the peak floor acceleration calculated by simulated and recorded ground motions for two buildings. While according to the hypothesis tests result, the difference in drift can be significant for the building with a shorter period. The results will help engineers and researchers to use or revise the procedure by using simulated ground motions for obtaining seismic responses.