A photograph of the earthquake damage to a concrete beam inside a building. The wall around the beam has been removed to access the beam. Concrete near the bottom of the beam has crumbled and the steel reinforcement inside is now exposed.
A photograph of the earthquake damage to a beam inside the basement of the Copthorne Hotel. A section of the concrete beam has crumbled to reveal the steel reinforcement underneath.
A photograph of a damaged support beam in the basement of the Copthorne Hotel. A section of the concrete has crumbled, exposing the steel reinforcement underneath.
Detail of steel bracing supporting the Colombo Street overpass. The photographer comments, "After the earthquake in Christchurch the Colombo St overpass got damaged and they used reinforcing steel beams to hold it up".
A photograph of emergency management personnel inspecting the earthquake damage to a concrete beam inside a building. The concrete near the bottom of the beam has crumbled and the steel reinforcement inside is now exposed.
A photograph of an excavator on a building site.
A photograph of a steel beam from 116 Lichfield Street.
A photograph of the earthquake damage to the concrete beams in a room in the PricewaterhouseCoopers Building. Sections of the concrete have crumbled to reveal the steel reinforcement underneath. A number of the ceiling panels are missing and another is hanging loose. Some of the bars that hold the ceiling panels are also hanging loose.
Bracing made of steel beams and concrete blocks that has been applied to the wall of St John the Baptist Church in Latimer Square.
Photograph captioned by BeckerFraserPhotos, "About the largest piece of the roof beams with its steel brace, lying on the footpath - Durham Street Methodist Church".
A photograph captioned by BeckerFraserPhotos, "The Colombo Street bridge, badly damaged in the 22 February 2011 earthquake. The large steel beams supporting the bridge are distorted".
A view across London Street in Lyttelton to the Empire Hotel and the Lyttelton Bakery. The buildings have been cordoned off by a safety fence and the facade of the Empire Hotel has been braced with steel beams.
Water has swept grit and splinters of wood onto the footpath outside the Durham Street Methodist Church. In the background of the photograph a piece of one of the church's roof beams with its steel brace can be seen.
A view across London Street in Lyttelton to the Empire Hotel and the Lyttelton Bakery. The buildings have been cordoned off by a safety fence. Sections of the side wall of the Empire Hotel have crumbled and its facade has been braced with steel beams.
The top of a corner tower from St John the Baptist Church in Latimer Square that has been set between two buttresses at the church's base. Bracing made of steel beams and concrete blocks can be seen fixed to the wall on the right of the photograph.
A photograph looking into the basement of the Copthorne Hotel. Rolls of carpet and chairs are sitting in a pool of water. To the left there is damage to one of the concrete beams. A section of the concrete has crumbled, exposing the steel reinforcement underneath.
The NMIT Arts & Media Building is the first in a new generation of multistorey timber structures. It employs an advanced damage avoidance earthquake design that is a world first for a timber building. Aurecon structural engineers are the first to use this revolutionary Pres-Lam technology developed at the University of Canterbury. This technology marks a fundamental change in design philosophy. Conventional seismic design of multi-storey structures typically depends on member ductility and the acceptance of a certain amount of damage to beams, columns and walls. The NMIT seismic system relies on pairs of coupled LVL shear walls that incorporate high strength steel tendons post-tensioned through a central duct. The walls are centrally fixed allowing them to rock during a seismic event. A series of U-shaped steel plates placed between the walls form a coupling mechanism, and act as dissipators to absorb seismic energy. The design allows the primary structure to remain essentially undamaged while readily replaceable connections act as plastic fuses. In this era where sustainability is becoming a key focus, the extensive use of timber and engineered-wood products such as LVL make use of a natural resource all grown and manufactured within a 100km radius of Nelson. This project demonstrates that there are now cost effective, sustainable and innovative solutions for multi-story timber buildings with potential applications for building owners in seismic areas around the world.