Search

found 4 results

Audio, Radio New Zealand

Many areas of Christchurch are underwater, dealing with what's been described as the worst flooding since the earthquakes. The high tide has just passed, with the rivers already running across roads and flooding into some homes. Schools have been closed, businesses inundated and dozens of roads around the city, closed. Already more than 70mm of rain has fallen in the past 24 hours, making it the city's wettest July on record. Now as the bad weather moves south the army has been put on standby in Dunedin for the expected deluge there. RNZ reporters Niva Chittock, Adam Burns and cameraman Nathan McKinnon are in Christchurch with the details.

Audio, Radio New Zealand

Nine to Noon continues to look at who's in the running to head up our biggest cities after local elections in October, with a focus today on the 11 candidates vying to be mayor of Christchurch. Three-term mayor Lianne Dalziel announced last July she'd be stepping down as mayor, having overseen nearly a decade's worth of the city's rebuild following the devastating earthquakes. The two major contenders for the role are Burwood city councillor Phil Mauger and former Canterbury District Health Board chief executive David Meates. Other contenders include the city's Wizard, a coffee boss, pro-gun pastor and a candidate who's stood in every election since 1971. For more, Kathryn is joined by David Williams, the South Island correspondent for Newsroom.co.nz.

Research papers, University of Canterbury Library

A number of reverse and strike-slip faults are distributed throughout mid-Canterbury, South Island, New Zealand, due to oblique continental collision. There is limited knowledge on fault interaction in the region, despite historical multi-fault earthquakes involving both reverse and strike-slip faults. The surface expression and paleoseismicity of these faults can provide insights into fault interaction and seismic hazards in the region. In this thesis, I studied the Lake Heron and Torlesse faults to better understand the key differences between these two adjacent faults located within different ‘tectonic domains’. Recent activity and surface expression of the Lake Heron fault was mapped and analysed using drone survey, Structure-from-Motion (SfM) derived Digital Surface Model (DSM), aerial image, 5 m-Digital Elevation Model (DEM), luminescence dating technique, and fold modelling. The results show a direct relationship between deformation zone width and the thickness of the gravel deposits in the area. Fold modelling using fault dip, net slip and gravel thickness produces a deformation zone comparable to the field, indicating that the fault geometry is sound and corroborating the results. This result Is consistent with global studies that demonstrate deposit (or soil thickness) correlates to fault deformation zone width, and therefore is important to consider for fault displacement hazard. A geomorphological study on the Torlesse fault was conducted using SfM-DSM, DEM and aerial images Ground Penetrating Radar (GPR) survey, trenching, and radiocarbon and luminescence dating. The results indicate that the Torlesse fault is primarily strike-slip with some dip slip component. In many places, the bedding-parallel Torlesse fault offsets post-glacial deposits, with some evidence of flexural slip faulting due to folding. Absolute dating of offset terraces using radiocarbon dating and slip on fault determined from lateral displacement calculating tool demonstrates the fault has a slip rate of around 0.5 mm/year to 1.0 mm/year. The likelihood of multi-fault rupture in the Torlesse Range has been characterised using paleoseismic trenching, a new structural model, and evaluation of existing paleoseismic data on the Porters Pass fault. Identification of overlapping of paleoseismic events in main Torlesse fault, flexural-slip faults and the Porters Pass fault in the Torlesse Range shows the possibility of distinct or multi-fault rupture on the Torlesse fault. The structural connectivity of the faults in the Torlesse zone forming a ‘flower structure’ supports the potential of multi-fault rupture. Multi-fault rupture modelling carried out in the area shows a high probability of rupture in the Porters Pass fault and Esk fault which also supports the co-rupture probability of faults in the region. This study offers a new understanding of the chronology, slip distribution, rupture characteristics and possible structural and kinematic relationship of Lake Heron fault and Torlesse fault in the South Island, New Zealand.