Photos taken in Lyttelton following the February 22 earthquake. File ref: CCL-2011-03-05-After-The-Earthquake-P1110456 From the collection of Christchurch City Libraries
An entry from Ruth Gardner's blog for 15 December 2010 entitled, "Freudian Slip?".
An entry from Ruth Gardner's Blog for 22 December 2013 entitled, "Santa's Slipping".
4 days later
On the way to Darfield to locate the faultline where the tectonic plates slipped, causing the magnitude 7.1 earthquake on Saturday 4 September 2010.
Slipping of the tectonic plates caused tension cracks on this previously unknown faultline that runs through this paddock; magnitude 7.1 earthquake in mid-Canterbury on Saturday 4 September 2010.
Slipping of the tectonic plates caused tension cracks on this previously unknown faultline that runs through this paddock; magnitude 7.1 earthquake in mid-Canterbury on Saturday 4 September 2010.
Slipping of the tectonic plates caused tension cracks on this previously unknown faultline that runs through this paddock; magnitude 7.1 earthquake in mid-Canterbury on Saturday 4 September 2010.
Slipping of the tectonic plates caused tension cracks on this previously unknown faultline that runs through this paddock; magnitude 7.1 earthquake in mid-Canterbury on Saturday 4 September 2010.
Slipping of the tectonic plates caused tension cracks on this previously unknown faultline that runs through this paddock; magnitude 7.1 earthquake in mid-Canterbury on Saturday 4 September 2010.
Slipping of the tectonic plates caused tension cracks on this previously unknown faultline that runs through this paddock; magnitude 7.1 earthquake in mid-Canterbury on Saturday 4 September 2010.
Slipping of the tectonic plates caused tension cracks on this previously unknown faultline that runs through this paddock; magnitude 7.1 earthquake in mid-Canterbury on Saturday 4 September 2010.
Slipping of the tectonic plates caused tension cracks on this previously unknown faultline that runs through this paddock; magnitude 7.1 earthquake in mid-Canterbury on Saturday 4 September 2010.
Slipping of the tectonic plates caused tension cracks on this previously unknown faultline that runs through this paddock; magnitude 7.1 earthquake in mid-Canterbury on Saturday 4 September 2010.
Slipping of the tectonic plates caused tension cracks on this previously unknown faultline that runs through this paddock; magnitude 7.1 earthquake in mid-Canterbury on Saturday 4 September 2010.
Slipping of the tectonic plates caused tension cracks on this previously unknown faultline that runs through this paddock; magnitude 7.1 earthquake in mid-Canterbury on Saturday 4 September 2010.
Slipping of the tectonic plates caused tension cracks on this previously unknown faultline that runs through this paddock; magnitude 7.1 earthquake in mid-Canterbury on Saturday 4 September 2010.
On the previously unknown faultline on Highfield Road in mid-Canterbury! This was where two tectonic plates slipped, causing the magnitude 7.1 earthquake on Saturday 4 September 2010.
Slipping of the tectonic plates caused tension cracks on this previously unknown faultline that runs through this paddock; magnitude 7.1 earthquake in mid-Canterbury on Saturday 4 September 2010.
Slipping of the tectonic plates caused tension cracks on this previously unknown faultline that runs through this paddock; magnitude 7.1 earthquake in mid-Canterbury on Saturday 4 September 2010.
A photograph showing ragged tarpaulins that have partly slipped off the building they were intended to protect.
A number of reverse and strike-slip faults are distributed throughout mid-Canterbury, South Island, New Zealand, due to oblique continental collision. There is limited knowledge on fault interaction in the region, despite historical multi-fault earthquakes involving both reverse and strike-slip faults. The surface expression and paleoseismicity of these faults can provide insights into fault interaction and seismic hazards in the region. In this thesis, I studied the Lake Heron and Torlesse faults to better understand the key differences between these two adjacent faults located within different ‘tectonic domains’. Recent activity and surface expression of the Lake Heron fault was mapped and analysed using drone survey, Structure-from-Motion (SfM) derived Digital Surface Model (DSM), aerial image, 5 m-Digital Elevation Model (DEM), luminescence dating technique, and fold modelling. The results show a direct relationship between deformation zone width and the thickness of the gravel deposits in the area. Fold modelling using fault dip, net slip and gravel thickness produces a deformation zone comparable to the field, indicating that the fault geometry is sound and corroborating the results. This result Is consistent with global studies that demonstrate deposit (or soil thickness) correlates to fault deformation zone width, and therefore is important to consider for fault displacement hazard. A geomorphological study on the Torlesse fault was conducted using SfM-DSM, DEM and aerial images Ground Penetrating Radar (GPR) survey, trenching, and radiocarbon and luminescence dating. The results indicate that the Torlesse fault is primarily strike-slip with some dip slip component. In many places, the bedding-parallel Torlesse fault offsets post-glacial deposits, with some evidence of flexural slip faulting due to folding. Absolute dating of offset terraces using radiocarbon dating and slip on fault determined from lateral displacement calculating tool demonstrates the fault has a slip rate of around 0.5 mm/year to 1.0 mm/year. The likelihood of multi-fault rupture in the Torlesse Range has been characterised using paleoseismic trenching, a new structural model, and evaluation of existing paleoseismic data on the Porters Pass fault. Identification of overlapping of paleoseismic events in main Torlesse fault, flexural-slip faults and the Porters Pass fault in the Torlesse Range shows the possibility of distinct or multi-fault rupture on the Torlesse fault. The structural connectivity of the faults in the Torlesse zone forming a ‘flower structure’ supports the potential of multi-fault rupture. Multi-fault rupture modelling carried out in the area shows a high probability of rupture in the Porters Pass fault and Esk fault which also supports the co-rupture probability of faults in the region. This study offers a new understanding of the chronology, slip distribution, rupture characteristics and possible structural and kinematic relationship of Lake Heron fault and Torlesse fault in the South Island, New Zealand.
The ground slipped laterally at this previously unknown faultline across Highfield Road in mid-Canterbury, resulting in a relative displacement of at least 2 metres and the magnitude 7.1 earthquake on Saturday 4 September 2010. Note the now misaligned fence posts, hedge and road.
The man who received Earthquake Commission files detailing claims by 83,000 Christchurch people says he's appalled the slip-up has become a political football.
Surface rupture and slip from the Mw 7.8 2016 Kaikōura Earthquake have been mapped in the region between the Leader and Charwell rivers using field mapping and LiDAR data. The eastern Humps, north Leader and Conway-Charwell faults ruptured the ground surface in the study area. The E-NE striking ‘The Humps’ Fault runs along the base of the Mt Stewart range front, appears to dip steeply NW and intersects the NNW-NNE Leader Fault which itself terminates northwards at the NE striking Conway-Charwell Fault. The eastern Humps Fault is up to the NW and accommodates oblique slip with reverse and right lateral displacement. Net slip on ‘The Humps’ Fault is ≤4 m and produced ≤4 m uplift of the Mt Stewart range during the earthquake. The Leader Fault strikes NNW-NNE with dips ranging from ~10° west to 80° east and accommodated ≤4 m net slip comprising left-lateral and up-to-the-west vertical displacement. Like the Humps west of the study area, surface-rupture of the Leader Fault occurred on multiple strands. The complexity of rupture on the Leader Fault is in part due to the occurrence of bedding-parallel slip within the Cretaceous-Cenozoic sequence. Although the Mt Stewart range front is bounded by ‘The Humps’ Fault, in the study area neither this fault nor the Leader Fault were known to have been active before the earthquake. Fieldwork and trenching investigations are ongoing to characterise the geometry, kinematics and paleoseismic history of the mapped active faults.
The Amuri Earthquake of September 1, 1888 (magnitude M = 6.5 to 6.8) occurred on the Hope River Segment of the Hope Fault west of Hanmer Plains. The earthquake was felt strongly in North Canterbury and North Westland and caused considerable property damage and landsliding in the Lower Hope Valley. However, damage reports and the spatial distribution of felt intensities emphasize extreme variations in seismic effects over short distances, probably due to topographic focusing and local ground conditions. Significant variations in lateral fault displacement occurred at secondary fault segment boundaries (side-steps and bends in the fault trace) during the 1888 earthquake. This historical spatial variation in lateral slip is matched by the Late Quaternary geomorphic distribution of slip on the Hope River Segment of the Hope Fault. Trenching studies at two sites on the Hope Fault have also identified evidence for five pre-historic earthquakes of similar magnitude to the 1888 earthquake and an average recurrence interval of 134 ± 27 years between events. Magnitude estimates for the 1888 earthquake are combined with a. strong ground motion attenuation expression to provide an estimate of potential ground accelerations in Amuri District during-future earthquakes on the Hope River Segment of the Hope Fault. The predicted acceleration response on bedrock sites within 20 km of the epicentral region is between 0.23 g and 0.34 g. The close match between the historic, inferred pre-historic and geomorphic distribution of lateral slip indicates that secondary fault segmentation exerts a strong structural control on rupture propagation and the expression of fault displacement at the surface. In basement rocks at depth the spatial variations in slip are inferred to be distributed within zones of pervasive cataclastic shear, on either side of the fault segment boundaries. The large variations in surface displacement across fault segment boundaries means that one must know the geometry of the fault in order to evaluate slip-rates calculated from individual locations. The average Late Quaternary slip-rate on the Hope Fault at Glynn Wye Station is between 15.5 mm/yr and 18.25 mm/yr and the rate on the subsidiary Kakapo Fault is between 5.0 mm/yr and 7.5 mm/yr. These rates have been determined from sites which are relatively free of structural complication.
Ground heaving on the faultline from which the Saturday 4 September 2010 earthquake originated.
A crack between the river bank and the footpath near the Williams Street Bridge in Kaiapoi. This crack has now largely been filled in. The visible gap shows how much the land slipped towards the river during the earthquake.
The ground literally opened up! On the previously unknown faultline along which the Saturday 4 September 2010 earthquake originated.
The ground literally opened up! On the previously unknown faultline along which the Saturday 4 September 2010 earthquake originated.