Search

found 12 results

Images, UC QuakeStudies

Patchwork quilts wrapped around the concrete slabs used to stabilise a broken wall on Winchester Street. They make it look snug despite the snow. Many projects like this have cropped up around Canterbury in an effort to brighten the earthquake environment.

Images, UC QuakeStudies

Patchwork quilts wrapped around the concrete slabs used to stabilise a broken wall on Winchester Street. They make it look snug despite the snow. Many projects like this have cropped up around Canterbury in an effort to brighten the earthquake environment.

Images, UC QuakeStudies

A black and white photograph of a partially demolished building. The remains of concrete slabs hang from reinforcing rods. The photographer comments, "Christchurch has a gallery of quake art on nearly every corner".

Images, eqnz.chch.2010

one of Christchurch's abandoned suburbs. The land moved - bricks and block walls everywhere collapsed - two multi story buildings folded - 184 people died. Wooden framed houses largely stayed up, many concrete slabs cracked, power poles leaned in liquid ground, surface bubbled, services ruptured .... damage to the cbd still gets the most cover...

Research papers, University of Canterbury Library

Drywalls are the typical infill or partitions used in new structures. They are usually located within structural frames and/or between upper and lower floor slabs in buildings. Due to the materials used in their construction, unlike masonry blocks, they can be considered as light non-structural infill/partition walls. These types of walls are especially popular in New Zealand and the USA. In spite of their popularity, little is known about their in-plane cyclic behaviour when infilled within a structural frame. The cause of this lack of knowledge can be attributed to the typical assumption that they are weak non-structural elements and are not expected to interact with the surrounding structural system significantly. However, recent earthquakes have repeatedly shown that drywalls interact with the structure and suffer severe damage at very low drift levels. In this paper, experimental test results of two typical drywall types (steel and timber framed) are reported in order to gather further information on; i) their reverse cyclic behaviour, ii) inter-storey drift levels at which they suffer different levels of damage, iii) the level of interaction with the surrounding structural frame system. The drywall specimens were tested using quasi-static reverse cyclic testing protocols within a full scale precast RC frame at the Structures Laboratory of the University of Canterbury.