Search

found 2 results

Research papers, The University of Auckland Library

Unreinforced masonry (URM) cavity-wall construction is a form of masonry where two leaves of clay brick masonry are separated by a continuous air cavity and are interconnected using some form of tie system. A brief historical introduction is followed by details of a survey undertaken to determine the prevalence of URM cavity-wall buildings in New Zealand. Following the 2010/2011 Canterbury earthquakes it was observed that URM cavity-walls generally suffered irreparable damage due to a lack of effective wall restraint and deficient cavity-tie connections, combined with weak mortar strength. It was found that the original cavity-ties were typically corroded due to moisture ingress, resulting in decreased lateral loadbearing capacity of the cavity-walls. Using photographic data pertaining to Christchurch URM buildings that were obtained during post-earthquake reconnaissance, 252 cavity-walls were identified and utilised to study typical construction details and seismic performance. The majority (72%, 182) of the observed damage to URM cavity-wall construction was a result of out-of-plane type wall failures. Three types of out-of-plane wall failure were recognised: (1) overturning response, (2) one-way bending, and (3) two-way bending. In-plane damage was less widely observed (28%) and commonly included diagonal shear cracking through mortar bed joints or bricks. The collected data was used to develop an overview of the most commonly-encountered construction details and to identify typical deficiencies in earthquake response that can be addressed via the selection and implementation of appropriate mitigation interventions. http://www.journals.elsevier.com/structures

Research papers, University of Canterbury Library

This thesis studies the behaviour of diaphragms in multi-storey timber buildings by providing methods for the estimation of the diaphragm force demand, developing an Equivalent Truss Method for the analysis of timber diaphragms, and experimentally investigating the effects of displacement incompatibilities between the diaphragm and the lateral load resisting system and developing methods for their mitigation. The need to better understand the behaviour of diaphragms in timber buildings was highlighted by the recent 2010-2011 Canterbury Earthquake series, where a number of diaphragms in traditional concrete buildings performed poorly, compromising the lateral load resistance of the structure. Although shortcomings in the estimation of force demand, and in the analysis and design of concrete floor diaphragms have already been partially addressed by other researchers, the behaviour of diaphragms in modern multi-storey timber buildings in general, and in low damage Pres-Lam buildings (consisting of post-tensioned timber members) in particular is still unknown. The recent demand of mid-rise commercial timber buildings of ten storeys and beyond has further highlighted the lack of appropriate methods to analyse timber diaphragms with irregular floor geometries and large spans made of both light timber framing and massive timber panels. Due to the lower stiffness of timber lateral load resisting systems, compared with traditional construction materials, and the addition of in-plane flexible diaphragms, the effect of higher modes on the global dynamic behaviour of a structure becomes more critical. The results from a parametric non-linear time-history analysis on a series of timber frame and wall structures showed increased storey shear and moment demands even for four storey structures when compared to simplistic equivalent static analysis. This effect could successfully be predicted with methods available in literature. The presence of diaphragm flexibility increased diaphragm inter-storey drifts and the peak diaphragm demand in stiff wall structures, but had less influence on the storey shears and moments. Diaphragm force demands proved to be significantly higher than the forces derived from equivalent static analysis, leading to potentially unsafe designs. It is suggested to design all diaphragms for the same peak demand; a simplified approach to estimate these diaphragm forces is proposed for both frame and wall structures. Modern architecture often requires complex floor geometries with long spans leading to stress concentrations, high force demands and potentially large deformations in the diaphragms. There is a lack of guidance and regulation regarding the analysis and design of timber diaphragms and a practical alternative to the simplistic equivalent deep beam analysis or costly finite element modelling is required. An Equivalent Truss Method for the analysis of both light timber framed and massive timber diaphragms is proposed, based on analytical formulations and verified against finite element models. With this method the panel unit shear forces (shear flow) and therefore the fastener demand, chord forces and reaction forces can be evaluated. Because the panel stiffness and fastener stiffness are accounted for, diaphragm deflection, torsional effects and transfer forces can also be assessed. The proposed analysis method is intuitive and can be used with basic analysis software. If required, it can easily be adapted for the use with diaphragms working in the non-linear range. Damage to floor diaphragms resulting from displacement incompatibilities due to frame elongation or out-of plane deformation of walls can compromise the transfer of inertial forces to the lateral load resisting system as well as the stability of other structural elements. Two post-tensioned timber frame structures under quasi-static cyclic and dynamic load, respectively, were tested with different diaphragm panel layouts and connections investigating their ability to accommodate frame elongations. Additionally, a post-tensioned timber wall was loaded under horizontal cyclic loads through two pairs of collector beams. Several different connection details between the wall and the beams were tested, and no damage to the collector beams or connections was observed in any of the tests. To evaluate the increased strength and stiffness due to the wall-beam interaction an analytical procedure is presented. Finally, a timber staircase core was tested under bi-directional loading. Different connection details were used to study the effect of displacement incompatibilities between the orthogonal collector beams. These experiments showed that floor damage due to displacement incompatibilities can be prevented, even with high levels of lateral drift, by the flexibility of well-designed connections and the flexibility of the timber elements. It can be concluded that the flexibility of timber members and the flexibility of their connections play a major role in the behaviour of timber buildings in general and of diaphragms specifically under seismic loads. The increased flexibility enhances higher mode effects and alters the diaphragm force demand. Simple methods are provided to account for this effect on the storey shear, moment and drift demands as well as the diaphragm force demands. The analysis of light timber framing and massive timber diaphragms can be successfully analysed with an Equivalent Truss Method, which is calibrated by accounting for the panel shear and fastener stiffnesses. Finally, displacement incompatibilities in frame and wall structures can be accommodated by the flexibilities of the diaphragm panels and relative connections. A design recommendations chapter summarizes all findings and allows a designer to estimate diaphragm forces, to analyse the force path in timber diaphragms and to detail the connections to allow for displacement incompatibilities in multi-storey timber buildings.