Aftershocks still shaking Christchurch seven years after quake
Articles, TV3
Just last week the city was rocked by four small earthquakes.
Just last week the city was rocked by four small earthquakes.
This thesis presents the findings from an experimental programme to determine the performance and behaviour of an integrated building incorporating low damage structural and non-structural systems. The systems investigated included post-tensioned rocking concrete frames, articulated floor solutions, low damage claddings and low damage partition systems. As part of a more general aim to increase the resilience of society against earthquake hazards, more emphasis has been given to damage-control design approaches in research. Multiple low-damage earthquake resistant structural and non-structural systems have emerged that are able to withstand high levels of drift or deflections will little or negligible residual. Dry jointed connections, articulated floor solutions, low damage cladding systems and low damage drywall partitions have all been developed separately and successfully tested. In spite of the extensive research effort and the adoption in practice of the low damage systems, work was required to integrate the systems within one building and verify the constructibility, behaviour and performance of the integrated systems. The objectives of this research were to perform dynamic experimental testing of a building which incorporated the low damage systems and acquire data which could be used to dynamically validate numerical models for each of the systems. A three phase experimental programme was devised and performed to dynamically test a half-scale two storey reinforced concrete building on the University of Canterbury shaking table. The three phases of the programme investigated: The structural system only. The rocking connections were tested as Post-Tensioned only connections and Hybrid connections (including dissipators). Two different articulated floor connections were also investigated. Non-structural systems. The Hybrid building was tested with each non-structural system separately; including low damage claddings, low damage partitions and traditional partitions. The Complete building was tested with Hybrid connections, low damage claddings and low damage partitions all integrated within the test specimen. The building was designed based on a full scale prototype building following the direct displacement based design to reach a peak inter-storey drift of 1.6% in a 1/500 year ground motion for a Wellington site. For each test set up, the test specimen was subjected to a ground motion sequence of 39 single direction ground motions. Through the sequence, both the local and global behaviours of the building and integrated systems were recorded in real time. The test specimen was subjected to over 400 ground motions throughout the testing programme. It sustained no significant damage that required reparations other than crumbling of the grout pads. The average peak inter-storey drifts of the buildings were lower than the design value of 1.6%. The low damage non-structural elements were undamaged in the ground motion sequence. The data acquired from each of the phases was used to successfully validate numerical models for each of the low damage systems included in the research.
On November 14 2016 a magnitude 7.8 earthquake struck the south island of New Zealand. The earthquake lasted for just two minutes with severe seismic shaking and damage in the Hurunui and Kaikōura districts. Although these are predominantly rural areas, with scattered small towns and mountainous topography, they also contain road and rail routes that are essential parts of the national transport infrastructure. This earthquake and the subsequent recovery are of particular significance as they represent a disaster following in close proximity to another similar disaster, with the Canterbury earthquakes occurring in a neighboring district five years earlier. The research used an inductive qualitative case study to explore the nature of the Kaikōura recovery. That recovery process involved a complex interplay between the three parties; (a) the existing local government in the district, (b) central government agencies funding the recovery of the local residents and the national transport infrastructure, and (c) recovery leaders arriving with recent expertise from the earlier Canterbury disaster. It was evident that three groups: locals, government, and experts represented a multi-party governance debate in which the control of the Kaikōura earthquake recovery was shared amongst them. Each party had their own expertise, adgenda and networks that they brought to the Kaikōura recovery, but this created tensions between external expertise and local, community leadership. Recent earthquake research suggests that New Zealand is currently in the midst of an earthquake cluster, with further seismic disasters likely to occur in relatively close succession. This is likely to be compounded by the increasing frequency of other natural disasters with the effects of climate change. The present study investigates a phenomenon that may become increasingly common, with the transfer of disaster expertise from one event to another, and the interface between those experts with local and national government in directing recoveries. The findings of this study have implications for practitioners and policy makers in NZ and other countries where disasters are experienced in close spatial and temporal proximity.