Search

found 16 results

Images, UC QuakeStudies

Demolition site and street art on a wall on Colombo Street, Sydenham. The work on the left is a Gap Filler project, Wayne Youle's "I seem to have temporarily misplaced my sense of humour " (2011), a shadow-board mural which depicts things lost during the earthquake.

Images, eqnz.chch.2010

The Old Lyttelton Post Office, opened in 1874, showing damage after a series of earthquakes hit Christchurch and Lyttelton over the last 9 months. In the shadow of a broken house, Down a deserted street, Propt walls, cold hearths, and phantom stairs, And the silence of dead feet — Locked wildly in one another's arms I saw two lovers meet. ...

Images, eqnz.chch.2010

The Cathedral of the Blessed Sacrament, Christcurch, after the 6.3 magnitude quake on 22 February 2011. When The Angels Fall Take your father's cross Gently from the wall A shadow still remaining See the churches fall In mighty arcs of sound And all that they're containing Yet all the rugged souls Looking for their lost homes Shuffle to...

Images, Alexander Turnbull Library

A large group of people stand on a huge sundial in a pattern that forms a map of New Zealand; the hand of the sundial casts a shadow that falls on nine minutes to one. Context - the people of New Zealand maintained a vigil of two minutes silence at 12.51 on 1 March which was exactly a week after the Christchurch earthquake of 22 February struck. Quantity: 1 digital cartoon(s).

Images, Alexander Turnbull Library

A man representing New Zealand reads a newspaper whose headline is ''Quake may cost insurance co's up to $16B'. Above him is an enormous mosquito that represents 'increased premiums' and that is about to suck the blood out of him; it casts a huge menacing shadow in which the man stands. Context - Insurance companies have experienced massive losses after the Canterbury earthquake. This may ultimately result in higher premiums as insurance companies try to recoup from their loss. According to Chris Ryan, Insurance Council chief executive, "The quake would probably result in foreign reinsurance companies increasing the premiums they charged local insurers." (Stuff 9 Sep 2010) Quantity: 1 digital cartoon(s).

Images, Alexander Turnbull Library

Shows a graph illustrating the 'Growth forecast' for the economy. A large finger representing the 'Reserve Bank' squashes the growth arrow as though it is a fly and it starts to zig-zag crazily downwards. The statement made 16th September looked a shadow of the bright one the Reserve Bank published three months ago. With its forecasts finalised the day before the Canterbury earthquake struck, the Bank has taken secateurs to its economic growth track, and a carving knife to its interest rate path. Instead of GDP growth pushing 4% this year and next, for example, it now struggles to reach 3% in each. It's tempting to think this has been driven by the wobbling international news over recent months. In fact it's been because of a suddenly sombre view around NZ consumer spending and the housing market. (Interest.co.nz) Quantity: 1 digital cartoon(s).

Images, Alexander Turnbull Library

The cartoon shows three 'Redzone Girls'. The first wears a green tshirt and wears a green 'no restriction' label, the second wears a yellow tshirt and has a yellow 'Limited access' label and the third wears a red tshirt and has a red label that reads 'munted'; she also has a red and white barrier around her. The second and third of the 'girls' are in an increasing state of decrepitude. Behind them is a crumbling brick wall. Context - Christchurch prostitutes aren't letting natural disaster prevent them from plying their trade on the streets despite the dangers of aftershocks in the city. NZPC's Christchurch regional co-ordinator, Anna Reed, said it was a concern sex workers were standing in the shadow of potentially unsafe buildings as the city was shaken by aftershocks, but said the shattered CBD had "left them with no outlet". Christchurch residents are up in arms about the number of prostitutes working in their local neighbourhoods because their usual work areas are out of bounds in the 'red zone'. (Stuff 25 February 2011) Quantity: 1 digital cartoon(s).

Audio, Radio New Zealand

Hon DAVID PARKER to the Minister of Finance: Does he stand by his answer on Tuesday regarding jobs "I think that the number of 170,000 may come from the initial Budget forecast for 2009, perhaps. I cannot remember the year exactly."? Dr KENNEDY GRAHAM to the Minister for Climate Change Issues: Given the recent loss of Māori Party support for his Climate Change Response (Emissions Trading and Other Matters) Amendment Bill, will he consider working with opposition parties on amendments to improve it? LOUISE UPSTON to the Minister of Finance: How is the Government's infrastructure programme contributing to building a more competitive economy? Hon DAVID CUNLIFFE to the Minister for Economic Development: Does he agree with the NZIER shadow board that "the growth outlook for the second half of 2012 looks weak and unemployment remains stubbornly high."? IAN McKELVIE to the Minister for Social Development: What announcements has she made to review Child Youth and Family's complaints process? Hon MARYAN STREET to the Minister of Health: What progress has been made in the delivery of the Prime Minister's Youth Mental Health Project announced in April of this year with an extra $11.3 million provided to support it? JACQUI DEAN to the Minister for the Environment: What reports has she received on the time taken for decisions on notified consents issued under the Resource Management Act 1991? GARETH HUGHES to the Minister of Foreign Affairs: Why did New Zealand pull out of a joint proposal with the United States to create a marine reserve in Antarctica's Ross Sea? Rt Hon WINSTON PETERS to the Prime Minister: Does he stand by the answers he gave yesterday to supplementary question 5 on Oral Question No 7 and supplementary question 3 on Oral Question No 12? NICKY WAGNER to the Minister for Canterbury Earthquake Recovery: What progress has the Government made to support repairing damaged houses and infrastructure following the Canterbury earthquakes? SUE MORONEY to the Prime Minister: Does he stand by his statement on 3News last night, on the subject of Business New Zealand's assertion that women need retraining when returning to employment after extended parental leave that "no. It wouldn't be my view"? JAMI-LEE ROSS to the Minister of Immigration: What is the Government doing to ensure that New Zealanders have first priority for jobs in the Canterbury rebuild?

Research papers, University of Canterbury Library

Land cover change information in urban areas supports decision makers in dealing with public policy planning and resource management. Remote sensing has been demonstrated as an efficient and accurate way to monitor land cover change over large extents. The Canterbury Earthquake Sequence (CES) caused massive damage in Christchurch, New Zealand and resulted in significant land cover change over a short time period. This study combined two types of remote sensing data, aerial imagery (RGB) and LiDAR, as the basis for quantifying land cover change in Christchurch between 2011 – 2015, a period corresponding to the five years immediately following the 22 February 2011 earthquake, which was part of the CES. An object based image analysis (OBIA) approach was adopted to classify the aerial imagery and LiDAR data into seven land cover types (bare land, building, grass, shadow, tree and water). The OBIA approach consisted of two steps, image segmentation and object classification. For the first step, this study used multi-level segmentation to better segment objects. For the second step, the random forest (RF) classifier was used to assign a land cover type to each object defined by the segmentation. Overall classification accuracies for 2011 and 2015 were 94.0% and 94.32%, respectively. Based on the classification result, land cover changes between 2011 and 2015 were then analysed. Significant increases were found in road and tree cover, while the land cover types that decreased were bare land, grass, roof, water. To better understand the reasons for those changes, land cover transitions were calculated. Canopy growth, seasonal differences and forest plantation establishment were the main reasons for tree cover increase. Redevelopment after the earthquake was the main reason for road area growth. By comparing the spatial distribution of these transitions, this study also identified Halswell and Wigram as the fastest developing suburbs in Christchurch. These results provided quantitative information for the effects of CES, with respect to land cover change. They allow for a better understanding for the current land cover status of Christchurch. Among those land cover changes, the significant increase in tree cover aroused particularly interest as urban forests benefit citizens via ecosystem services, including health, social, economic, and environmental benefits. Therefore, this study firstly calculated the percentages of tree cover in Christchurch’s fifteen wards in order to provide a general idea of tree cover change in the city extent. Following this, an automatic individual tree detection and crown delineation (ITCD) was undertaken to determine the feasibility of automated tree counting. The accuracies of the proposed approach ranged between 56.47% and 92.11% in thirty different sample plots, with an overall accuracy of 75.60%. Such varied accuracies were later found to be caused by the fixed tree detection window size and misclassifications from the land cover classification that affected the boundary of the CHM. Due to the large variability in accuracy, tree counting was not undertaken city-wide for both time periods. However, directions for further study for ITCD in Christchurch could be exploring ITCD approaches with variable window size or optimizing the classification approach to focus more on producing highly accurate CHMs.

Research papers, University of Canterbury Library

The Canterbury Earthquake Sequence (CES) of 2010-2011 produced large seismic moments up to Mw 7.1. These large, near-to-surface (<15 km) ruptures triggered >6,000 rockfall boulders on the Port Hills of Christchurch, many of which impacted houses and affected the livelihoods of people within the impacted area. From these disastrous and unpredicted natural events a need arose to be able to assess the areas affected by rockfall events in the future, where it is known that a rockfall is possible from a specific source outcrop but the potential boulder runout and dynamics are not understood. The distribution of rockfall deposits is largely constrained by the physical properties and processes of the boulder and its motion such as block density, shape and size, block velocity, bounce height, impact and rebound angle, as well as the properties of the substrate. Numerical rockfall models go some way to accounting for all the complex factors in an algorithm, commonly parameterised in a user interface where site-specific effects can be calibrated. Calibration of these algorithms requires thorough field checks and often experimental practises. The purpose of this project, which began immediately following the most destructive rupture of the CES (February 22, 2011), is to collate data to characterise boulder falls, and to use this information, supplemented by a set of anthropogenic boulder fall data, to perform an in-depth calibration of the three-dimensional numerical rockfall model RAMMS::Rockfall. The thesis covers the following topics: • Use of field data to calibrate RAMMS. Boulder impact trails in the loess-colluvium soils at Rapaki Bay have been used to estimate ranges of boulder velocities and bounce heights. RAMMS results replicate field data closely; it is concluded that the model is appropriate for analysing the earthquake-triggered boulder trails at Rapaki Bay, and that it can be usefully applied to rockfall trajectory and hazard assessment at this and similar sites elsewhere. • Detailed analysis of dynamic rockfall processes, interpreted from recorded boulder rolling experiments, and compared to RAMMS simulated results at the same site. Recorded rotational and translational velocities of a particular boulder show that the boulder behaves logically and dynamically on impact with different substrate types. Simulations show that seasonal changes in soil moisture alter rockfall dynamics and runout predictions within RAMMS, and adjustments are made to the calibration to reflect this; suggesting that in hazard analysis a rockfall model should be calibrated to dry rather than wet soil conditions to anticipate the most serious outcome. • Verifying the model calibration for a separate site on the Port Hills. The results of the RAMMS simulations show the effectiveness of calibration against a real data set, as well as the effectiveness of vegetation as a rockfall barrier/retardant. The results of simulations are compared using hazard maps, where the maximum runouts match well the mapped CES fallen boulder maximum runouts. The results of the simulations in terms of frequency distribution of deposit locations on the slope are also compared with those of the CES data, using the shadow angle tool to apportion slope zones. These results also replicate real field data well. Results show that a maximum runout envelope can be mapped, as well as frequency distribution of deposited boulders for hazard (and thus risk) analysis purposes. The accuracy of the rockfall runout envelope and frequency distribution can be improved by comprehensive vegetation and substrate mapping. The topics above define the scope of the project, limiting the focus to rockfall processes on the Port Hills, and implications for model calibration for the wider scientific community. The results provide a useful rockfall analysis methodology with a defensible and replicable calibration process, that has the potential to be applied to other lithologies and substrates. Its applications include a method of analysis for the selection and positioning of rockfall countermeasure design; site safety assessment for scaling and demolition works; and risk analysis and land planning for future construction in Christchurch.