Object Overview for 'Updated probabilistic seismic hazard assessment for the Canterbury region (Stirling et al, 2007) and Updated probabilistic seismic hazard assessment for the Canterbury region: addendum report (Stirling et al, 2008)'.
Object overview for 'Updated probabilistic seismic hazard assessment for the Canterbury region: addendum report'.
This study updated the 1999 Earthquake hazard and risk assessment study Stage 1 Part B: Probabilistic seismic hazard assessment and Earthquake scenarios for the Canterbury region, and historic earthquakes in Christchurch report. It incorporated new fault data, a new distributed seismicity model and new methods for estimating Modified Mercalli intensities. See Object Overview for background and usage information.
This study updated the 1999 Earthquake hazard and risk assessment study Stage 1 Part B: Probabilistic seismic hazard assessment and Earthquake scenarios for the Canterbury region, and historic earthquakes in Christchurch report. It incorporated new fault data, a new distributed seismicity model and new methods for estimating Modified Mercalli intensities. See Object Overview for background and usage information.
Object Overview of 'Earthquake hazard and risk assessment study Stage 1 Part B: Probabilistics seismic hazard assessment and earthquake scenarios for the Canterbury region, and historic earthquakes in Christchurch (Stirling et al, 1999).'
Overview of the Presentation Jarg: • The seismic context & liquefaction Tom: • Potable Water Supply • Waste Water Network
A video of an address by Dr. Kelvin Berryman, Director of Natural Hazards and Principal Scientist at GNS, at the 2014 Seismics and the City forum. This talk was part of the Building Momentum section, and explored the question, 'What is acceptable risk and tolerable impacts of future hazard events like earthquakes and flooding?'
This paper concerns the explicit consideration of near-fault directivity in conventional ground motion prediction models, and its implication for probabilistic seismic hazard analysis (PSHA) in New Zealand. The proposed approach utilises recently developed models by Shahi & Baker (2011), which account for both the 'narrowband' nature of the directivity pulse on spectral ordinates, and the probability of pulse occurrence at the site of interest. Furthermore, in order to correctly consider directivity, distributed seismicity sources are considered as finite-faults, as opposed to their (incorrect) conventional treatment as point-sources. The significance of directivity on hazard analysis results is illustrated for various vibration periods at generic sites located in Christchurch and Otira, two locations whose seismic hazard is comprised of notably different seismic sources. When compared to the PSHA results considering directivity and distributed seismicity as finite faults, it is shown that the NZS1170.5:2004 directivity factor is notably unconservative for all vibration periods in Otira (i.e. high seismic hazard region); and unconservative for Christchurch at short-to-moderate vibration periods ( < 3s); but conservative at long periods ( > 4s).
This paper examines the consistency of seismicity and ground motion models, used for seismic hazard analysis in New Zealand, with the observations in the Canterbury earthquakes. An overview is first given of seismicity and ground motion modelling as inputs of probabilistic seismic hazard analysis, whose results form the basis for elastic response spectra in NZS1170.5:2004. The magnitude of earthquakes in the Canterbury earthquake sequence are adequately allowed for in the current NZ seismicity model, however the consideration of ‘background’ earthquakes as point sources at a minimum depth of 10km results in up to a 60% underestimation of the ground motions that such events produce. The ground motion model used in conventional NZ seismic hazard analysis is shown to provide biased predictions of response spectra (over-prediction near T=0.2s , and under-predictions at moderate-to-large vibration periods). Improved ground motion prediction can be achieved using more recent NZ-specific models.
Liquefaction In Brooklands.
Damaged road in Brooklands.
Infrastructure damage in Lyttelton.
Infrastructure damage in Lyttelton.
Damaged footpath in Lyttelton.
Landslides around Lytteton Harbour.
Landslides around Lytteton Harbour.
Rock falls in redcliffs.
Rock falls in redcliffs.
Rock falls in redcliffs.
New Bridge in Ferrymead.
Infrastructure damage in Lyttelton.
Damaged footpath in Lyttelton.
Infrastructure damage in Lyttelton.
Infrastructure damage in Lyttelton.
Collapse of Shag Rock.
Infrastructure damage in Lyttelton.
A truck dumps rubbish.
Liquefaction flooding in Travis Country.
Damage to New Brighton Bridge.
Damage to New Brighton Bridge.