Opening and Overview of Seismics and the City 2014
Videos, UC QuakeStudies
A video of the opening remarks and overview of the 2014 Seismics and the City forum by MC Rob Cope-Williams.
A video of the opening remarks and overview of the 2014 Seismics and the City forum by MC Rob Cope-Williams.
A video of an address by Tom Hooper, CEO of Canterbury Development Corporation, at the 2014 Seismics and the City forum. This talk was part of the Building Confidence section.
A video of an address by Hon. Dr. Nick Smith, Minister of Housing, at the 2014 Seismics and the City forum. This talk was part of the Building Communities section.
A video of an address by Dr. Vivienne Ivory, Principal Urban Scientist at Opus International Consultants, at the 2014 Seismics and the City forum. This talk was part of the Building Confidence section.
A video of an address by Liz Macpherson, Government Statistician and Chief Executive at Statistics New Zealand, at the 2014 Seismics and the City forum. This talk was part of the Building Confidence section.
A video of an address by Andre Lovatt, CEO of the Arts Centre, at the 2014 Seismics and the City forum. This talk was part of the Building Innovation section.
A video of an address by Lianne Dalziel, Mayor of Christchurch, at the 2014 Seismics and the City forum. This talk was part of the Breakfast Presentations section, the theme of which was Building Momentum.
A video of an address by Mike Underhill, Chief Executive of Energy Efficiency Conservation Authority (EECA), at the 2014 Seismics and the City forum. This talk was part of the Building Innovation section.
A video of an address by Dr. Rod Carr, Vice Chancellor of the University of Canterbury, at the 2014 Seismics and the City forum. This talk was part of the Building Innovation section.
A video of an address by David Freeman-Greene, General Manager for Commercial at Orion, at the 2014 Seismics and the City forum. This talk was part of the Building Innovation section.
A video of an address by Dr. Andrew West, Vice Chancellor of Lincoln University, at the 2014 Seismics and the City forum. This talk was part of the Building Innovation section.
A video of an address by David Ayers, Mayor of Waimakariri District, at the 2014 Seismics and the City forum. This talk was part of the Breakfast Presentations section, the theme of which was Building Momentum.
A video of an address by Ian Simpson, CEO of the NZ Earthquake Commission, at the 2014 Seismics and the City forum. This talk was part of the Breakfast Presentations section, the theme of which was Building Momentum.
A video of an address by Roger Sutton, CEO of Canterbury Earthquake Recovery Authority, at the 2014 Seismics and the City forum. This talk was part of the Breakfast Presentations section, the theme of which was Building Momentum.
A video of an address by Joanna Norris, Editor of The Press, at the 2014 Seismics and the City forum. This talk was part of the Breakfast Presentations section, the theme of which was Building Momentum.
A video of an address by Scott Noyes, Energy Management Specialist for Schneider Electric NZ, at the 2014 Seismics and the City forum. This talk was part of the Building Connectivity section, and focused on collaborative and innovative initiatives relevant to the rebuild of Greater Christchurch.
A video of an address by Antony Gough, Managing Director of Hereford Holdings Ltd, at the 2014 Seismics and the City forum. This talk was part of the Building Opportunities section, and explored commercial development opportunities in Central Christchurch, the constraints, and what needs to be done.
A video of an address by Peter Townsend, CEO of the Canterbury Employers' Chamber of Commerce, at the 2014 Seismics and the City forum. This talk was part of the Breakfast Presentations section, the theme of which was Building Momentum.
A video of an address by Mike Greer, Director of Mike Greer Homes Ltd, at the 2014 Seismics and the City forum. This talk was part of the Building Opportunities section, and focused on the housing needs and the residential building opportunities in the inner city, Greater Christchurch, and the Canterbury region.
A video of an address by Brendon Burns, Facilitator at Brendon Burns & Associates MACRO Communications, at the 2014 Seismics and the City forum. This talk was part of the Building Communities section and explored the extent to which the new city core will be a 'government-flavoured doughnut', the key issues with this concept, and the possible solutions.
A video of an address by Dr. Kelvin Berryman, Director of Natural Hazards and Principal Scientist at GNS, at the 2014 Seismics and the City forum. This talk was part of the Building Momentum section, and explored the question, 'What is acceptable risk and tolerable impacts of future hazard events like earthquakes and flooding?'
A video of an address by Minnie Baragwanath, CEO of Be.Institute, at the 2014 Seismics and the City forum. This talk was part of the Building Communities section and explored the extent to which the new city core will be a 'government-flavoured doughnut', the key issues with this concept, and the possible solutions.
A video of an address by Tim Howe, Partner of Ocean Partners Ltd, at the 2014 Seismic and the City forum. This talk was part of the Building Communities section and explored the extent to which the new city core will be a 'government-flavoured doughnut', the key issues with this concept, and the possible solutions.
A video of an address by Michael Rouse, National Lead at Deloitte Australia, at the 2014 Seismics and the City forum. This talk was part of the Building Confidence section, and covered the role of the external advisory in project execution and construction management in terms of ensuring best practice and cost savings.
A video of an address by Alex Cutler, CEO of the New Zealand Green Building Council, at the 2014 Seismics and the City forum. This talk was part of the Building Communities section and explored the extent to which the new city core will be a 'government-flavoured doughnut', the key issues with this concept, and the possible solutions.
A video of a panel discussion at the 2014 Seismics and the City forum. The theme of this section was Building Momentum, and it addressed panellists' views on the progress of the rebuild, the main obstacles, and how they can be resolved. The panellists are as follows: Christchurch Mayor Lianne Dalziel; Waimakariri Mayor David Ayers; Roger Sutton, CEO of CERA; Ian Simpson, CEO of the NZ Earthquake Commission; Peter Townsend, CEO of Canterbury Employers' Chamber of Commerce; and Joanna Norris, Editor of The Press.
Seismically vulnerable buildings constitute a major problem for the safety of human beings. In many parts of the world, reinforced concrete (RC) frame buildings designed and constructed with substandard detailing, no consideration of capacity design principles, and improper or no inclusion of the seismic actions, have been identified. Amongst those vulnerable building, one particular typology representative of the construction practice of the years previous to the 1970’s, that most likely represents the worst case scenario, has been widely investigated in the past. The deficiencies of that building typology are related to non-ductile detailing in beam column joints such as the use of plain round bars, the lack of stirrups inside the joint around the longitudinal reinforcement of the column, the use of 180° end hooks in the beams, the use of lap splices in potential ‘plastic hinge’ regions, and substandard quality of the materials. That type of detailing and the lack of a capacity design philosophy create a very fragile fuse in the structure where brittle inelastic behaviour is expected to occur, which is the panel zone region of exterior beam column joints. The non-ductile typology described above was extensively investigated at the University of Canterbury in the context of the project ‘Retrofit Solutions for New Zealand Multi-Storey Buildings’ (2004-2011), founded by the ‘Foundation for Research, Science and Technology’ Tūāpapa Rangahau Pūtaiao. The experimental campaign prior to the research carried out by the author consisted of quasi-static tests of beam column joint subassemblies subjected to lateral loading regime, with constant and varying axial load in the column. Most of those specimens were representative of a plane 2D frame (knee joint), while others represented a portion of a space 3D frame (corner joints), and only few of them had a floor slab, transverse beams, and lap splices. Using those experiments, several feasible, cost-effective, and non-invasive retrofit techniques were developed, improved, and refined. Nevertheless, the slow motion nature of those experiments did not take into account the dynamical component inherent to earthquake related problems. Amongst the set of techniques investigated, the use of FRP layers for strengthening beam column joints is of particular interest due to its versatility and the momentum that its use has gained in the current state of the practice. That particular retrofit technique was previously used to develop a strengthening scheme suitable for plane 2D and space 3D corner beam column joints, but lacking of floor slabs. In addition, a similar scheme was not developed for exterior joints of internal frames, referred here as ‘cruciform’. In this research a 2/5 scale RC frame model building comprising of two frames in parallel (external and internal) joined together by means of floor slabs and transverse beams, with non-ductile characteristics identical to those of the specimens investigated previously by others, and also including lap splices, was developed. In order to investigate the dynamic response of that building, a series of shake table tests with different ground motions were performed. After the first series of tests, the specimen was modified by connecting the spliced reinforcement in the columns in order to capture a different failure mode. Ground motions recorded during seismic events that occurred during the initial period of the experimental campaign (2010) were used in the subsequent experiments. The hierarchy of strengths and sequence of events in the panel zone region were evaluated in an extended version of the bending moment-axial load (M-N) performance domain developed by others. That extension was required due to the asymmetry in the beam cross section introduced by the floor slab. In addition, the effect of the torsion resistance provided by the spandrel (transverse beam) was included. In order to upgrade the brittle and unstable performance of the as-built/repaired specimen, a practical and suitable ad-hoc FRP retrofit intervention was developed, following a partial retrofit strategy that aimed to strengthen exterior beam column joints only (corner and cruciform). The ability of the new FRP scheme to revert the sequence of events in the panel zone region was evaluated using the extended version of the M-N performance domain as well as the guidelines for strengthening plane joints developed by others. Weakening of the floor slab in a novel configuration was also incorporated with the purpose of reducing the flexural capacity of the beam under negative bending moment (slab in tension), enabling the damage relocation from the joint into the beam. The efficacy of the developed retrofit intervention in upgrading the seismic performance of the as-built specimen was investigated using shake table tests with the input motions used in the experiments of the as-built/repaired specimen. Numerical work aimed to predict the response of the model building during the most relevant shake table tests was carried out. By using a simple numerical model with concentrated plasticity elements constructed in Ruaumoko2D, the results of blind and post-experimental predictions of the response of the specimen were addressed. Differences in the predicted response of the building using the nominal and the actual recorded motions of the shake table were investigated. The dependence of the accuracy of the numerical predictions on the assumed values of the parameters that control the hysteresis rules of key structural members was reviewed. During the execution of the experimental campaign part of this thesis, two major earthquakes affected the central part of Chile (27 of February 2010 Maule earthquake) and the Canterbury region in New Zealand (22 February 2011 Canterbury earthquake), respectively. As the author had the opportunity to experience those events and investigate their consequences in structures, the observations related to non-ductile detailing and drawbacks in the state of the practice related to reinforced concrete walls was also addressed in this research, resulting in preliminary recommendations for the refinement of current seismic code provisions and assessment guidelines. The investigations of the ground motions recorded during those and other earthquakes were used to review the procedures related to the input motions used for nonlinear dynamic analysis of buildings as required by most of the current code provisions. Inelastic displacement spectra were constructed using ground motions recorded during the earthquakes mentioned above, in order to investigate the adequacy of modification factors used to obtain reduced design spectra from elastic counterparts. Finally a simplified assessment procedure for RC walls that incorporates capacity compatible spectral demands is proposed.
None
Structural engineering is facing an extraordinarily challenging era. These challenges are driven by the increasing expectations of modern society to provide low-cost, architecturally appealing structures which can withstand large earthquakes. However, being able to avoid collapse in a large earthquake is no longer enough. A building must now be able to withstand a major seismic event with negligible damage so that it is immediately occupiable following such an event. As recent earthquakes have shown, the economic consequences of not achieving this level of performance are not acceptable. Technological solutions for low-damage structural systems are emerging. However, the goal of developing a low-damage building requires improving the performance of both the structural skeleton and the non-structural components. These non-structural components include items such as the claddings, partitions, ceilings and contents. Previous research has shown that damage to such items contributes a disproportionate amount to the overall economic losses in an earthquake. One such non-structural element that has a history of poor performance is the external cladding system, and this forms the focus of this research. Cladding systems are invariably complicated and provide a number of architectural functions. Therefore, it is important than when seeking to improve their seismic performance that these functions are not neglected. The seismic vulnerability of cladding systems are determined in this research through a desktop background study, literature review, and postearthquake reconnaissance survey of their performance in the 2010 – 2011 Canterbury earthquake sequence. This study identified that precast concrete claddings present a significant life-safety risk to pedestrians, and that the effect they have upon the primary structure is not well understood. The main objective of this research is consequently to better understand the performance of precast concrete cladding systems in earthquakes. This is achieved through an experimental campaign and numerical modelling of a range of precast concrete cladding systems. The experimental campaign consists of uni-directional, quasi static cyclic earthquake simulation on a test frame which represents a single-storey, single-bay portion of a reinforced concrete building. The test frame is clad with various precast concrete cladding panel configurations. A major focus is placed upon the influence the connection between the cladding panel and structural frame has upon seismic performance. A combination of experimental component testing, finite element modelling and analytical derivation is used to develop cladding models of the cladding systems investigated. The cyclic responses of the models are compared with the experimental data to evaluate their accuracy and validity. The comparison shows that the cladding models developed provide an excellent representation of real-world cladding behaviour. The cladding models are subsequently applied to a ten-storey case-study building. The expected seismic performance is examined with and without the cladding taken into consideration. The numerical analyses of the case-study building include modal analyses, nonlinear adaptive pushover analyses, and non-linear dynamic seismic response (time history) analyses to different levels of seismic hazard. The clad frame models are compared to the bare frame model to investigate the effect the cladding has upon the structural behaviour. Both the structural performance and cladding performance are also assessed using qualitative damage states. The results show a poor performance of precast concrete cladding systems is expected when traditional connection typologies are used. This result confirms the misalignment of structural and cladding damage observed in recent earthquake events. Consequently, this research explores the potential of an innovative cladding connection. The outcomes from this research shows that the innovative cladding connection proposed here is able to achieve low-damage performance whilst also being cost comparable to a traditional cladding connection. It is also theoretically possible that the connection can provide a positive value to the seismic performance of the structure by adding addition strength, stiffness and damping. Finally, the losses associated with both the traditional and innovative cladding systems are compared in terms of tangible outcomes, namely: repair costs, repair time and casualties. The results confirm that the use of innovative cladding technology can substantially reduce the overall losses that result from cladding damage.
In recent Canterbury earthquakes, structures have performed well in terms of life safety but the estimated total cost of the rebuild was as high as $40 billion. The major contributors to this cost are repair/demolition/rebuild cost, the resulting downtime and business interruption. For this reason, the authors are exploring alternate building systems that can minimize the downtime and business interruption due to building damage in an earthquake; thereby greatly reducing the financial implications of seismic events. In this paper, a sustainable and demountable precast reinforced concrete (RC) frame system in which the precast members are connected via steel tubes/plates or steel angles/plates and high strength friction grip (HSFG) bolts is introduced. In the proposed system, damaged structural elements in seismic frames can be easily replaced with new ones; thereby making it an easily and quickly repairable and a low-loss system. The column to foundation connection in the proposed system can be designed either as fixed or pinned depending on the requirement of strength and stiffness. In a fixed base frame system, ground storey columns will also be damaged along with beams in seismic events, which are to be replaced after seismic events; whereas in a pin base frame only beams (which are easy to replace) will be damaged. Low to medium rise (3-6 storey) precast RC frame buildings with fixed and pin bases are analyzed in this paper; and their lateral capacity, lateral stiffness and natural period are scrutinized to better understand the pros and cons of the demountable precast frame system with fixed and pin base connections.