Erosion to earthquakes with geologist and paleontologist Dr Hamish Campbell from GNS science. Chatham Islands geology and it's links with Christchurch and Canterbury.
Christchurch based science commentator Simon Pollard, talks about his earthquake experience.
Jarg Pettinga, Geological Science, photographed on the beach at Sumner.
Blog of Julian, educational outreach facilitator at GNS Science. Includes information on GNS Science field trips; explanations of New Zealand geology; video clips; and sections on the Christchurch earthquakes, and New Zealand fossils.
Mark Quigley, Geological Sciences, photographed outside his red-zoned property in Avonside.
John Townend is an Associate Professor at the School of Geography, Environment and Earth Sciences.
Geologist and paleontologist at GNS Science Hamish Campbell discusses the geology behind the Christchurch earthquake.
John Townend is an Associate Professor at the School of Geography, Environment and Earth Sciences at Victoria University Wellington.
John Townend is an Associate Professor at the School of Geography, Environment and Earth Sciences at Victoria University Wellington.
John Townend is a seismologist for GNS; and an Associate Professor at the School of Geography, Environment and Earth Sciences.
John Townend is a seismologist for GNS; and an Associate Professor at the School of Geography, Environment and Earth Sciences.
John Townend is a seismologist for GNS; and an Associate Professor at the School of Geography, Environment and Earth Sciences.
John Townend is a seismologist for GNS; and an Associate Professor at the School of Geography, Environment and Earth Sciences.
None
UC student trainee science teacher Carrie Whyte helps out at a Papanui study centre, assisting Bopha Chea with her Art History assignment.
UC student trainee science teacher Carrie Whyte helps out at a Papanui study centre, assisting Bopha Chea with her Art History assignment.
Our tech/science correspondent Peter Griffin takes a look at technology use after the Christchurch earthquake. Plus version 2 of the iPad.
Video of participant number UC207YW's earthquake story, captured by the UC QuakeBox project.
Video of Liz Grant's earthquake story, captured by the UC QuakeBox project.
Video of Eric's earthquake story, captured by the UC QuakeBox project.
Video of Roman's earthquake story, captured by the UC QuakeBox project.
A photograph captioned by BeckerFraserPhotos, "The clock tower of Science Alive, formerly the Christchurch Railway Station, on Moorhouse Road. The clock has stopped at 4.36 am on 4 September 2010 and has been left that way".
The previously unknown Greendale Fault ruptured to the ground surface, causing up to 5 metres horizontal and 1 metre vertical permanent offset of the ground, during the September 2010 Darfield (Canterbury) earthquake. Environment Canterbury commissioned GNS Science, with help from the University of Canterbury, to define a fault avoidance zone and to estimate the fault recurrence interval. There is little evidence for past movement on the fault in the past 16,000 years. However, because of the uncertainties involved, a conservative approach was taken and the fault has been categorised as a Recurrence Interval Class IV fault (a recurrence interval of between 5,000 and 10,000 years). A PhD study by a University of Canterbury student will work towards refining the Recurrence Interval Class over the next three years. Taking a risk-based approach, the Ministry for the Environment Active Fault Guidelines recommend that normal residential development be allowed within the fault avoidance zone for faults of this Recurrence Interval Class, but recommends restrictions for larger community buildings or facilities with post-disaster functions. The report is assisting Selwyn District Council in granting consents for rebuilding houses on or near the Greendale Fault that were damaged by permanent distortion of the ground due to the fault rupture in the September 2010 earthquake. The report provides specific recommendations for building on or close to the Greendale Fault, which are being implemented by Selwyn District Council. See Object Overview for background and usage information.
A photograph captioned by BeckerFraserPhotos, "The clock tower of Science Alive, formerly the Christchurch Railway Station, on Moorhouse Road. The clock has stopped at 4.36 am on 4 September 2010 and has been left that way".
Tree mortality is a fundamental process governing forest dynamics, but understanding tree mortality patterns is challenging because large, long-term datasets are required. Describing size-specific mortality patterns can be especially difficult, due to few trees in larger size classes. We used permanent plot data from Nothofagus solandri var. cliffortioides (mountain beech) forest on the eastern slopes of the Southern Alps, New Zealand, where the fates of trees on 250 plots of 0.04 ha were followed, to examine: (1) patterns of size-specific mortality over three consecutive periods spanning 30 years, each characterised by different disturbance, and (2) the strength and direction of neighbourhood crowding effects on sizespecific mortality rates. We found that the size-specific mortality function was U-shaped over the 30-year period as well as within two shorter periods characterised by small-scale pinhole beetle and windthrow disturbance. During a third period, characterised by earthquake disturbance, tree mortality was less size dependent. Small trees (,20 cm in diameter) were more likely to die, in all three periods, if surrounded by a high basal area of larger neighbours, suggesting that sizeasymmetric competition for light was a major cause of mortality. In contrast, large trees ($20 cm in diameter) were more likely to die in the first period if they had few neighbours, indicating that positive crowding effects were sometimes important for survival of large trees. Overall our results suggest that temporal variability in size-specific mortality patterns, and positive interactions between large trees, may sometimes need to be incorporated into models of forest dynamics.
Scientists from GNS Science have faced tough criticism at the Royal Commission into the Canterbury earthquakes, being accused of funneling resources into the wrong areas and giving vague advice on earthquake risks.
This manuscript provides a critical examination of the ground motions recorded in the near-source region resulting from the 22 February 2011 Christchurch earthquake. Particular attention is given to reconciling the observed spatial distribution of ground motions in terms of physical phenomena related to source, path and site effects. The large number of near-source observed strong ground motions show clear evidence of: forward-directivity, basin generated surface waves, liquefaction and other significant nonlinear site response. The pseudo-acceleration response spectra (SA) amplitudes and significant duration of strong motions agree well with empirical prediction models, except at long vibration periods where the influence of basin-generated surface waves and nonlinear site response are significant and not adequately accounted for in empirical SA models. Pseudo-acceleration response spectra are also compared with those observed in the 4 September 2010 Darfield earthquake and routine design response spectra used in order to emphasise the amplitude of ground shaking and elucidate the importance of local geotechnical characteristics on surface ground motions. The characteristics of the observed vertical component accelerations are shown to be strongly dependent on source-to-site distance and are comparable with those from the 4 September 2010 Darfield earthquake, implying the large amplitudes observed are simply a result of many observations at close distances rather than a peculiar source effect.
Surface rupture of the previously unrecognised Greendale Fault extended west-east for ~30 km across alluvial plains west of Christchurch, New Zealand, during the Mw 7.1 Darfield (Canterbury) earthquake of September 2010. Surface rupture displacement was predominantly dextral strike-slip, averaging ~2.5 m, with maxima of ~5 m. Vertical displacement was generally less than 0.75 m. The surface rupture deformation zone ranged in width from ~30 to 300 m, and comprised discrete shears, localised bulges and, primarily, horizontal dextral flexure. About a dozen buildings, mainly single-storey houses and farm sheds, were affected by surface rupture, but none collapsed, largely because most of the buildings were relatively flexible and resilient timber-framed structures and also because deformation was distributed over a relatively wide zone. There were, however, notable differences in the respective performances of the buildings. Houses with only lightly-reinforced concrete slab foundations suffered moderate to severe structural and non-structural damage. Three other buildings performed more favourably: one had a robust concrete slab foundation, another had a shallow-seated pile foundation that isolated ground deformation from the superstructure, and the third had a structural system that enabled the house to tilt and rotate as a rigid body. Roads, power lines, underground pipes, and fences were also deformed by surface fault rupture and suffered damage commensurate with the type of feature, its orientation to the fault, and the amount, sense and width of surface rupture deformation.
At 4.35am on Saturday 4 September 2010, a magnitude 7.1 earthquake struck near the township of Darfield in Canterbury leading to widespread damage in Christchurch and the wider central Canterbury region. Though it was reported no lives were lost, that was not entirely correct. Over 3,000 animals perished as a result of the earthquake and 99% of these deaths would have been avoidable if appropriate mitigation measures had been in place. Deaths were predominantly due to zoological vulnerability of birds in captive production farms. Other problems included lack of provision of animal welfare at evacuation centres, issues associated with multiple lost and found pet services, evacuation failure due to pet separation and stress impact on dairy herds and associated milk production. The Canterbury Earthquake has highlighted concerns over a lack of animal emergency welfare planning and capacity in New Zealand, an issue that is being progressed by the National Animal Welfare Emergency Management Group. As animal emergency management becomes better understood by emergency management and veterinary professionals, it is more likely that both sectors will have greater demands placed upon them by national guidelines and community expectations to ensure provisions are made to afford protection of animals in times of disaster. A subsequent and more devastating earthquake struck the region on Monday 22 February 2011; this article however is primarily focused on the events pertaining to the September 4 event.
Geomorphic, structural and chronological data are used to establish the late Quaternary paleoseismicity of the active dextral-oblique Northern Esk Fault in North Canterbury, New Zealand. Detailed field mapping of the preserved c. 35 km of surface traces between the Hurunui River and Ashley Head reveals variations in strike ranging from 005° to 057°. Along with kinematic data collected from fault plane striae and offset geomorphic markers along the length of the fault these variations are used to distinguish six structural subsections of the main trace, four dextral-reverse and two dextral-normal. Displacements of geomorphic markers such as minor streams and ridges are measured using differential GPS and rangefinder equipment to reveal lateral offsets ranging from 3.4 to 23.7 m and vertical offsets ranging from < 1 to 13.5 m. Characteristic single event displacements of c. 5 m and c. 2 m have been calculated for strike-slip and reverse sections respectively. The use of fault scaling relationships reveals an anomalously high displacement to surface rupture length ratio when compared to global data sets. Fault scaling relationships based on width limited ruptures and magnitude probabilities from point measurements of displacement imply earthquake magnitudes of Mw 7.0 to 7.5. Optically Stimulated Luminescence (OSL) ages from displaced Holocene alluvial terraces at the northern extent of the active trace along with OSL and radiocarbon samples of the central sections constrain the timing of the last two surface rupturing events (11.15 ±1.65 and 3.5 ± 2.8 ka) and suggest a recurrence interval of c. 5612 ± 445 years and late Quaternary reverse and dextral slip rates of c. 0.31 mm/yr and 0.82 mm/yr respectively. The results of this study show that the Northern Esk Fault accommodates an important component of the c. 0.7 – 2 mm/yr of unresolved strain across the plate boundary within the North Canterbury region and affirm the Esk Fault as a source of potentially damaging ground shaking in the Canterbury region.