Search

found 11 results

Research papers, The University of Auckland Library

The Manchester Courts building was a heritage building located in central Christchurch (New Zealand) that was damaged in the Mw 7.1 Darfield earthquake on 4 September 2010 and subsequently demolished as a risk reduction exercise. Because the building was heritage listed, the decision to demolish the building resulted in strong objections from heritage supporters who were of the opinion that the building had sufficient residual strength to survive possible aftershock earthquakes. On 22 February 2011 Christchurch was struck by a severe aftershock, leading to the question of whether building demolition had proven to be the correct risk reduction strategy. Finite element analysis was used to undertake a performance-based assessment, validating the accuracy of the model using the damage observed in the building before its collapse. In addition, soil-structure interaction was introduced into the research due to the comparatively low shear wave velocity of the soil. The demolition of a landmark heritage building was a tragedy that Christchurch will never recover from, but the decision was made considering safety, societal, economic and psychological aspects in order to protect the city and its citizens. The analytical results suggest that the Manchester Courts building would have collapsed during the 2011 Christchurch earthquake, and that the collapse of the building would have resulted in significant fatalities.

Audio, Radio New Zealand

Hon JUDITH COLLINS to the Prime Minister: Does she stand by all her Government’s statements and actions? HELEN WHITE to the Minister of Finance: What recent reports has he seen on the New Zealand economy? Hon PAUL GOLDSMITH to the Minister of Education: Does he stand by all his statements and policies on education? GINNY ANDERSEN to the Minister of Housing: What recent announcements has she made about the Government’s transitional housing programme? NICOLA WILLIS to the Minister of Housing: Has the Government kept the commitment made in the 2017 Speech from the Throne to develop a ‘Rent to Own’ scheme; if so, how many families has the scheme helped into houses since then? ANAHILA KANONGATA'A-SUISUIKI to the Minister for Social Development and Employment: What support has the Ministry of Social Development provided to people and families affected by recent COVID-19 restrictions? NICOLE McKEE to the Minister of Police: Will Government actions reduce gang crime and gang numbers this year? IBRAHIM OMER to the Lead Coordination Minister for the Government's Response to the Royal Commission's Report into the Terrorist Attack on the Christchurch Mosques: What recent engagement has there been with the Muslim and other ethnic communities on the Royal Commission of Inquiry into the terrorist attack on Christchurch masjidain? SIMEON BROWN to the Minister of Police: Does she stand by her commitment to achieve the Striving Towards 1800 New Police initiative; if so, when will she achieve this initiative? TEANAU TUIONO to the Minister for Economic and Regional Development: What advice, if any, has he received about the upcoming launch in New Zealand of a satellite that includes the “Gunsmoke-J” payload from the United States Army’s Space and Missile Defense Command? MARJA LUBECK to the Minister for Workplace Relations and Safety: What recent announcements has he made about improving the Holidays Act 2003? TIM VAN DE MOLEN to the Minister for Building and Construction: How many applications has the Residential Earthquake-Prone Building Financial Assistance Scheme had since its inception in September last year, and how much has been appropriated for the scheme?

Research papers, The University of Auckland Library

As damage and loss caused by natural hazards have increased worldwide over the past several decades, it is important for governments and aid agencies to have tools that enable effective post-disaster livelihood recovery to create self-sufficiency for the affected population. This study introduces a framework of critical components that constitute livelihood recovery and the critical factors that lead to people’s livelihood recovery. A comparative case study is employed in this research, combined with questionnaire surveys and interviews with those communities affected by large earthquakes in Lushan, China and in Christchurch and Kaikōura, New Zealand. In Lushan, China, a framework with four livelihood components was established, namely, housing, employment, wellbeing and external assistance. Respondents considered recovery of their housing to be the most essential element for livelihood diversification. External assistance was also rated highly in assisting with their livelihood recovery. Family ties and social connections seemed to have played a larger role than that of government agencies and NGOs. However, the recovery of livelihood cannot be fully achieved without wellbeing aspects being taken into account, and people believed that quality of life and their physical and mental health were essential for livelihood restoration. In Christchurch, New Zealand, the identified livelihood components were validated through in-depth interviews. The results showed that the above framework presenting what constitutes successful livelihood recovery could also be applied in Christchurch. This study also identified the critical factors to affect livelihood recovery following the Lushan and Kaikōura earthquakes, and these include community safety, availability of family support, level of community cohesion, long-term livelihood support, external housing recovery support, level of housing recovery and availability of health and wellbeing support. The framework developed will provide guidance for policy makers and aid agencies to prioritise their strategies and initiatives in assisting people to reinstate their livelihood in a timely manner post-disaster. It will also assist the policy makers and practitioners in China and New Zealand by setting an agenda for preparing for livelihood recovery in non-urgent times so the economic impact and livelihood disruption of those affected can be effectively mitigated.

Research papers, University of Canterbury Library

A buckling-restrained braced frame (BRBF) is a structural bracing system that provides lateral strength and stiffness to buildings and bridges. They were first developed in Japan in the 1970s (Watanabe et al. 1973, Kimura et al. 1976) and gained rapid acceptance in the United States after the Northridge earthquake in 1994 (Bruneau et al. 2011). However, it was not until the Canterbury earthquakes of 2010/2011, that the New Zealand construction market saw a significant uptake in the use of buckling-restrained braces (BRBs) in commercial buildings (MacRae et al. 2015). In New Zealand there is not yet any documented guidance or specific instructions in regulatory standards for the design of BRBFs. This makes it difficult for engineers to anticipate all the possible stability and strength issues within a BRBF system and actively mitigate them in each design. To help ensure BRBF designs perform as intended, a peer review with physical testing are needed to gain building compliance in New Zealand. Physical testing should check the manufacturing and design of each BRB (prequalification testing), and the global strength and stability of each BRB its frame (subassemblage testing). However, the financial pressures inherent in commercial projects has led to prequalification testing (BRB only testing) being favoured without adequate design specific subassemblage testing. This means peer reviewers have to rely on BRB suppliers for assurances. This low regulation environment allows for a variety of BRBF designs to be constructed without being tested or well understood. The concern is that there may be designs that pose risk and that issues are being overlooked in design and review. To improve the safety and design of BRBFs in New Zealand, this dissertation studies the behaviour of BRBs and how they interact with other frame components. Presented is the experimental test process and results of five commercially available BRB designs (Chapter 2). It discusses the manufacturing process, testing conditions and limitations of observable information. It also emphasises that even though subassemblage testing is impractical, uniaxial testing of the BRB only is not enough, as this does not check global strength or stability. As an alternative to physical testing, this research uses computer simulation to model BRB behaviour. To overcome the traditional challenges of detailed BRB modelling, a strategy to simulate the performance of generic BRB designs was developed (Chapter 3). The development of nonlinear material and contact models are important aspects of this strategy. The Chaboche method is employed using a minimum of six backstress curves to characterize the combined isotropic and kinematic hardening exhibited by the steel core. A simplified approach, adequate for modelling the contact interaction between the restrainer and the core was found. Models also capture important frictional dissipation as well as lateral motion and bending associated with high order constrained buckling of the core. The experimental data from Chapter 2 was used to validate this strategy. As BRBs resist high compressive loading, global stability of the BRB and gusseted connection zone need to be considered. A separate study was conducted that investigated the yielding and buckling strength of gusset plates (Chapter 4). The stress distribution through a gusset plate is complex and difficult to predict because the cross-sectional area of gusset plate is not uniform, and each gusset plate design is unique in shape and size. This has motivated design methods that approximate yielding of gusset plates. Finite element modelling was used to study the development of yielding, buckling and plastic collapse behaviour of a brace end bolted to a series of corner gusset plates. In total 184 variations of gusset plate geometries were modelled in Abaqus®. The FEA modelling applied monotonic uniaxial load with an imperfection. Upon comparing results to current gusset plate design methods, it was found that the Whitmore width method for calculating the yield load of a gusset is generally un-conservative. To improve accuracy and safety in the design of gusset plates, modifications to current design methods for calculating the yield area and compressive strength for gusset plates is proposed. Bolted connections are a popular and common connection type used in BRBF design. Global out-of-plane stability tends to govern the design for this connection type with numerous studies highlighting the risk of instability initiated by inelasticity in the gussets, neck of the BRB end and/or restrainer ends. Subassemblage testing is the traditional method for evaluating global stability. However, physical testing of every BRBF variation is cost prohibitive. As such, Japan has developed an analytical approach to evaluate out-of-plane stability of BRBFs and incorporated this in their design codes. This analytical approach evaluates the different BRB components under possible collapse mechanisms by focusing on moment transfer between the restrainer and end of the BRB. The approach have led to strict criteria for BRBF design in Japan. Structural building design codes in New Zealand, Europe and the United States do not yet provide analytical methods to assess BRB and connection stability, with prototype/subassemblage testing still required as the primary means of accreditation. Therefore it is of interest to investigate the capability of this method to evaluate stability of BRBs designs and gusset plate designs used in New Zealand (including unstiffened gusset connection zones). Chapter 5 demonstrates the capability of FEA to study to the performance of a subassemblage test under cyclic loading – resembling that of a diagonal ground storey BRBF with bolted connections. A series of detailed models were developed using the strategy presented in Chapter 3. The geometric features of BRB 6.5a (Chapter 2) were used as a basis for the BRBs modelled. To capture the different failure mechanisms identified in Takeuchi et al. (2017), models varied the length that the cruciform (non-yielding) section inserts into the restrainer. Results indicate that gusset plates designed according to New Zealand’s Steel Structures Standard (NZS 3404) limit BRBF performance. Increasing the thickness of the gusset plates according to modifications discussed in Chapter 4, improved the overall performance for all variants (except when Lin/ Bcruc = 0.5). The effect of bi-directional loading was not found to notably affect out-of-plane stability. Results were compared against predictions made by the analytical method used in Japan (Takeuchi method). This method was found to be generally conservative is predicting out-of-plane stability of each BRBF model. Recommendations to improve the accuracy of Takeuchi’s method are also provided. The outcomes from this thesis should be helpful for BRB manufacturers, researchers, and in the development of further design guidance of BRBFs.