Information on damage caused by the Canterbury earthquakes of 2010 and 2011, for homeowners, tenants, insurers, lawyers, realtors, builders, developers, engineers and building consent authorities.
A graph showing changes in residential building work.
A video of an address by Mike Greer, Director of Mike Greer Homes Ltd, at the 2014 Seismics and the City forum. This talk was part of the Building Opportunities section, and focused on the housing needs and the residential building opportunities in the inner city, Greater Christchurch, and the Canterbury region.
The Canterbury Earthquake Sequence (CES), induced extensive damage in residential buildings and led to over NZ$40 billion in total economic losses. Due to the unique insurance setting in New Zealand, up to 80% of the financial losses were insured. Over the CES, the Earthquake Commission (EQC) received more than 412,000 insurance claims for residential buildings. The 4 September 2010 earthquake is the event for which most of the claims have been lodged with more than 138,000 residential claims for this event only. This research project uses EQC claim database to develop a seismic loss prediction model for residential buildings in Christchurch. It uses machine learning to create a procedure capable of highlighting critical features that affected the most buildings loss. A future study of those features enables the generation of insights that can be used by various stakeholders, for example, to better understand the influence of a structural system on the building loss or to select appropriate risk mitigation measures. Previous to the training of the machine learning model, the claim dataset was supplemented with additional data sourced from private and open access databases giving complementary information related to the building characteristics, seismic demand, liquefaction occurrence and soil conditions. This poster presents results of a machine learning model trained on a merged dataset using residential claims from the 4 September 2010.
A map showing the location of heritage buildings in the residential red zone.
A photograph of a dusty monitor in an earthquake-damaged building on Poplar Street taken during the Residential Access Project. The Residential Access Project gave residents temporary access within the red-zone cordon in order to retrieve items from their homes after the 22 February 2011 earthquake. Dislodged bricks can also be seen around the monitor.
View down the side of a damaged residential property, where parts of the wall and building rubble has fallen.
A photograph of a room inside a flat on Poplar Street taken during the Residential Access Project. The project gave residents temporary access within the red-zone cordon in order to retrieve items from their homes. The building's outer wall has crumbled leaving the room exposed.
A photograph of a room inside a flat on Poplar Street taken during the Residential Access Project. The project gave residents temporary access within the red-zone cordon in order to retrieve items from their homes. The building's outer wall has crumbled leaving the room exposed.
A photograph of a room inside a flat on Poplar Street taken during the Residential Access Project. The project gave residents temporary access within the red-zone cordon in order to retrieve items from their homes. The building's outer wall has crumbled leaving the room exposed.
A photograph of a room inside a flat on Poplar Street taken during the Residential Access Project. The project gave residents temporary access within the red-zone cordon in order to retrieve items from their homes. The building's outer wall has crumbled leaving the room exposed.
A photograph of a room inside a flat on Poplar Street taken during the Residential Access Project. The project gave residents temporary access within the red-zone cordon in order to retrieve items from their homes. The building's outer wall has crumbled leaving the room exposed.
A photograph of workers from the Residential Access Project sitting outside the Alice in Videoland Building on the corner of Tuam and High Streets. The project gave residents temporary access within the red-zone cordon in order to retrieve items from their homes.
A photograph of Brandon, Elizabeth Ackerman and Danica Nel on the site of a demolished building on Tuam Street. The trio can be seen wearing hard hats and florescent vests. The photograph was taken during the Residential Access Project which gave residents temporary access within the red-zone cordon in order to retrieve items from their homes after the 22 February 2011 earthquake.
A residential property that has been damaged by the earthquakes. Next to it is pile of building rubble and bits of furniture.
A residential property that has been damaged by the earthquakes. Next to it is pile of building rubble and bits of furniture.
A photograph of an Urban Search and Rescue team member examining the contents of a flat on Poplar Street during the Residential Access Project. The project gave residents temporary access within the red-zone cordon in order to retrieve items from their homes. The buildings wall has crumbled leaving the room exposed.
This study analyses the Earthquake Commission’s (EQC) insurance claims database to investigate the influence of seismic intensity and property damage resulting from the Canterbury Earthquake Sequence (CES) on the repair costs and claim settlement duration for residential buildings. Firstly, the ratio of building repair cost to its replacement cost was expressed as a Building Loss Ratio (BLR), which was further extended to Regional Loss Ratio (RLR) for greater Christchurch by multiplying the average of all building loss ratios with the proportion of building stock that lodged an insurance claim. Secondly, the total time required to settle the claim and the time taken to complete each phase of the claim settlement process were obtained. Based on the database, the regional loss ratio for greater Christchurch for three events producing shakings of intensities 6, 7, and 8 on the modified Mercalli intensity scale were 0.013, 0.066, and 0.171, respectively. Furthermore, small (less than NZD15,000), medium (between NZD15,000 and NZD100,000), and large (more than NZD100,000) claims took 0.35-0.55, 1.95-2.45, and 3.35-3.85 years to settle regardless of the building’s construction period and earthquake intensities. The number of claims was also disaggregated by various building characteristics to evaluate their relative contribution to the damage and repair costs.
The ultimate goal of this study is to develop a model representing the in-plane behaviour of plasterboard ceiling diaphragms, as part of the efforts towards performance-based seismic engineering of low-rise light timber-framed (LTF) residential buildings in New Zealand (NZ). LTF residential buildings in NZ are constructed according to a prescriptive standard – NZS 3604 Timberframed buildings [1]. With regards to seismic resisting systems, LTF buildings constructed to NZS3604 often have irregular bracing arrangements within a floor plane. A damage survey of LTF buildings after the Canterbury earthquake revealed that structural irregularity (irregular bracing arrangement within a plane) significantly exacerbated the earthquake damage to LTF buildings. When a building has irregular bracing arrangements, the building will have not only translational deflections but also a torsional response in earthquakes. How effectively the induced torsion can be resolved depends on the stiffness of the floors/roof diaphragms. Ceiling and floor diaphragms in LTF buildings in NZ have different construction details from the rest of the world and there appears to be no information available on timber diaphragms typical of NZ practice. This paper presents experimental studies undertaken on plasterboard ceiling diaphragms as typical of NZ residential practice. Based on the test results, a mathematical model simulating the in-plane stiffness of plasterboard ceiling diaphragms was developed, and the developed model has a similar format to that of plasterboard bracing wall elements presented in an accompany paper by Liu [2]. With these two models, three-dimensional non-linear push-over studies of LTF buildings can be undertaken to calculate seismic performance of irregular LTF buildings.
A photograph of the site of a demolished building on Tuam Street which is being used as a car park. The photograph was taken during the Residential Access Project which gave residents temporary access within the red-zone cordon in order to retrieve items from their homes after the 22 February 2011 earthquake.
West Auckland residents begin the cleanup after yesterday's tornado. The Canterbury Earthquakes Royal Commission calls for the seismic grading of all non-residential buildings.
A photograph of workers in fluorescent vests standing in front of the earthquake damaged McKenzie and Willis Building. The photograph was taken on 29 April 2011 during the Residential Access Project which gave residents temporary access within the red-zone cordon in order to retrieve items from their homes after the 22 February 2011 earthquake.
A photograph of two workers standing in the site of a demolished building on Tuam Street which is being used as a car park. The photograph was taken during the Residential Access Project which gave residents temporary access within the red-zone cordon in order to retrieve items from their homes after the 22 February 2011 earthquake.
A fence around a residential property where the side wall has collasped, exposing the interior structures and fixtures. Piles of building rubble are contained in the fencing.
Mesh fencing around a residential property. A recyling and an organics bin have been used to support the fencing, and inside a pile of building rubble can be seen.
A photograph of Elizabeth Ackerman and Danica Nel standing next to trailer on the site of a demolished building on Tuam Street. The duo can be seen wearing hard hats and florescent vests. The photograph was taken during the Residential Access Project which gave residents temporary access within the red-zone cordon in order to retrieve items from their homes after the 22 February 2011 earthquake.
A video of an address by Hon. Dr. Nick Smith, Minister of Housing, at the 2014 Seismics and the City forum. This talk was part of the Building Communities section.
Seismic isolation is an effective technology for significantly reducing damage to buildings and building contents. However, its application to light-frame wood buildings has so far been unable to overcome cost and technical barriers such as susceptibility of light-weight buildings to movement under high-wind loading. The 1994 Northridge Earthquake (6.7 MW) in the United States, 1995 Kobe Earthquake (6.9 MW) in Japan and 2011 Christchurch Earthquake (6.7 Mw) all highlighted significant loss to light-frame wood buildings with over half of earthquake recovery costs allocated to their repair and reconstruction. This poster presents a value case to highlight the benefits of seismically isolated residential buildings compared to the standard fixed-base dwellings for the Wellington region. Loss data generated by insurance claim information from the 2011 Christchurch Earthquake has been used to determine vulnerability functions for the current light-frame wood building stock. By using a simplified single degree of freedom (SDOF) building model, methods for determining vulnerability functions for seismic isolated buildings are developed. Vulnerability functions are then applied directly in a loss assessment to determine the Expected Annual Loss. Vulnerability was shown to dramatically reduce for isolated buildings compared to an equivalent fixed-base building resulting in significant monetary savings, justifying the value case. A state-of-the-art timber modelling software, Timber3D, is then used to model a typical residential building with and without seismic isolation to assess the performance of a proposed seismic isolation system which addresses the technical and cost issues.
Damage seen around a residential property, where a section of the wall has separated from the building. Fencing and tape have been placed around the section, and a notice on the fence says "Danger. Do not enter".
Damage seen around a residential property, where a section of the wall has separated from the building. Fencing and tape have been placed around the section, and a notice on the fence says "Danger. Do not enter".