A photograph of a crowd in a shop on New Regent Street, for the launch of Whole House Reuse. The official release of the Materials Catalogue and premiere of a short documentary was part of FESTA 2013.
A photograph of a crowd in a shop on New Regent Street, for the launch of Whole House Reuse. The official release of the Materials Catalogue and premiere of a short documentary was part of FESTA 2013.
A photograph of a crowd in a shop on New Regent Street, for the launch of Whole House Reuse. The official release of the Materials Catalogue and premiere of a short documentary was part of FESTA 2013.
A photograph of a crowd in a shop on New Regent Street, for the launch of Whole House Reuse. The official release of the Materials Catalogue and premiere of a short documentary was part of FESTA 2013.
A photograph of a crowd in a shop on New Regent Street, for the launch of Whole House Reuse. The official release of the Materials Catalogue and premiere of a short documentary was part of FESTA 2013.
A photograph of a crowd in a shop on New Regent Street, for the launch of Whole House Reuse. The official release of the Materials Catalogue and premiere of a short documentary was part of FESTA 2013.
A photograph of a crowd in a shop on New Regent Street, for the launch of Whole House Reuse. The official release of the Materials Catalogue and premiere of a short documentary was part of FESTA 2013.
A photograph of a crowd in a shop on New Regent Street, for the launch of Whole House Reuse. The official release of the Materials Catalogue and premiere of a short documentary was part of FESTA 2013.
A photograph of a crowd in a shop on New Regent Street, for the launch of Whole House Reuse. The official release of the Materials Catalogue and premiere of a short documentary was part of FESTA 2013.
New re-locatable classrooms being readied for use at Halswell School.
An image used as a cover photo on the All Right? Facebook page. The image reads, "You're warmer than a onesie".
An image designed for use as a profile picture and Timeline image on the All Right? Facebook page. The image reads, "Psst... We're giving away Tiny Adventures. Quick, fun family activity cards. Come and meet us to get yours!".
A photograph of Sally Airey standing in a Re:START mall car park on Cashel Street. Airey is holding a large handmade mask that will be used as part of FESTA's Canterbury Tales event. Canterbury Tales was created by Free Theatre Christchurch, and was the main event of FESTA 2013.
An image used as a profile picture on the All Right? Facebook page. The image reads, "Psst... We're giving away tiny adventures!" The image was also posted by All Right? to their Facebook page on 5 September 2014 at 7:00am.
A woman takes a photograph over the top of the cordon fence at the east end of Re:Start mall. The photographer comments, "The new temporary city mall has been open in Christchurch now for a week. Buildings damaged in the earthquake have been demolished and replaced with cargo containers to create a new, temporary, Cashel Mall. I visited the mall yesterday and was quite impressed with what they have done. The cargo containers have been nicely converted, brightly painted and smartly branded to create some good looking stores ... You'd think it would be strange to stand where my old office used to be and view these cargo-container-stores, but the reality was that it was so far removed from what used to be there that it was actually quite difficult to make the connection. It was only when straying to the attractive wooden boundary fences and peering over that you're suddenly taken back to the time running right up to, and shortly after, the earthquake".
A photograph captioned by BeckerFraserPhotos, "Pieces of iron fretwork from the entrance of the Warners Hotel which have been carefully laid on the ground outside. This shows the careful salvaging which has taken place in order for pieces to be re-used later".
A photograph captioned by BeckerFraserPhotos, "Pieces of iron fretwork from the entrance of the Warners Hotel which have been carefully laid on the ground outside. This shows the careful salvaging which has taken place in order for pieces to be re-used later".
A PDF copy of two designs for banners that were used at a New Zealand Red Cross event. One banner has the All Right? logo, while the other reads, "It's all right if you're feeling over it, stoked, lucky, on edge, or over-whelmed today".
A photograph captioned by BeckerFraserPhotos, "Pieces of iron fretwork from the entrance to the Warners Hotel carefully laid on the ground in front of the building. Thisshows the careful salvaging which has taken place during the demolistion of many heritage building in order to be able to re-use significant pieces later".
Overview of SeisFinder SeisFinder is an open-source web service developed by QuakeCoRE and the University of Canterbury, focused on enabling the extraction of output data from computationally intensive earthquake resilience calculations. Currently, SeisFinder allows users to select historical or future events and retrieve ground motion simulation outputs for requested geographical locations. This data can be used as input for other resilience calculations, such as dynamic response history analysis. SeisFinder was developed using Django, a high-level python web framework, and uses a postgreSQL database. Because our large-scale computationally-intensive numerical ground motion simulations produce big data, the actual data is stored in file systems, while the metadata is stored in the database. The basic SeisFinder architecture is shown in Figure 1.
Natural catastrophes are increasing worldwide. They are becoming more frequent but also more severe and impactful on our built environment leading to extensive damage and losses. Earthquake events account for the smallest part of natural events; nevertheless seismic damage led to the most fatalities and significant losses over the period 1981-2016 (Munich Re). Damage prediction is helpful for emergency management and the development of earthquake risk mitigation projects. Recent design efforts focused on the application of performance-based design engineering where damage estimation methodologies use fragility and vulnerability functions. However, the approach does not explicitly specify the essential criteria leading to economic losses. There is thus a need for an improved methodology that finds the critical building elements related to significant losses. The here presented methodology uses data science techniques to identify key building features that contribute to the bulk of losses. It uses empirical data collected on site during earthquake reconnaissance mission to train a machine learning model that can further be used for the estimation of building damage post-earthquake. The first model is developed for Christchurch. Empirical building damage data from the 2010-2011 earthquake events is analysed to find the building features that contributed the most to damage. Once processed, the data is used to train a machine-learning model that can be applied to estimate losses in future earthquake events.
A photograph of a make-shift toilet in the Christchurch Art Gallery. A sign behind it reads, "Portaloos Department. We know that 80,000 people need loos. We have 900-1800 available or coming, We don't need to be told people need loos. Thank you. We're number one with your number twos!". Signs below this read, "Toilet Occupied", "Toilet Vacant" and, "In Tray". The Art Gallery was used as the temporary headquarters for Civil Defence after the 22 February 2011 earthquake.
Alan Hoskin, a member of the University of Canterbury's E-Learning team, in their temporary office in the James Hight building. The photographer comments, "First looks at our new temporary (maybe) office space. Our group will stay here until April or May 2011, then will move to another floor in the Central Library. 700 hall with Alan. The corridor has a small seminar room at the end, and our offices on the right. To the left is the open sitting and reception area; we're trying to think of ways to make use of this".
Micro - electro - mechanical system (MEMS) based accelerometers are now frequently used in many different parts of our day - to - day lives. It is also increasingly being used for structural testing applications. Researchers have had res ervation of using these devices as they are relatively untested, but now with the wider adoption, it provides a much cheaper and more versatile tool for structural engineering researchers. A number of damaged buildings in the Christchurch Central Business District (CBD) were instrumented with a number of low - cost MEMS accelerometers after the major Christchurch earthquakes. The accelerometers captured extremely high quality building response data as the buildings experienced thousands of aftershocks. This d ata set was amongst one of only a handful of data set s available around the world which provides building response data subjected to real ground motion. Furthermore, due to technological advances, a much larger than usual number of accelerometers has been deployed making the data set one of the most comprehensive available. This data set is utilised to extract modal parameters of the buildings. This paper summarises the operating requirements and preference for using such accelerometers for experimental mod al analysis. The challenges for adapting MEMS based devices for successful modal parameters identification are also discussed.
An image of 'Polar Opposite': a cartoon cat and dog. 'Polar Opposite' is one of the 'Festive Besties, a series of characters created by All Right? for their 2015 Christmas e-cards. All Right? used the image as a Facebook cover photo on 18 December 2015 at 9:27am with the caption, "Who's your Polar Opposite? Hint: Like avo and Marmite, it'll be someone who you're an unlikely pair with! Thank them and your other 2015 Besties today with our fab FREE tiles: allright.org.nz/festive".
The entrance to KB02, the University of Canterbury's Digital Media Group temporary office in Kirkwood Village, the complex of prefabs set up after the earthquakes to provide temporary office and classroom space for the university. The photographer comments, "The e-learning group and the video conferencing team are now located in the Kirkwood Village at the University of Canterbury. It's a very impressive project, about 60 buildings arranged in various configurations with some used for teaching or computer labs, and others as staff offices. We will probably stay here for several years now. The front doors. We'll need to advertise our presence once we're settled in".
A faded yellow sticker stuck to the window of a house on Avonside Drive. It has been issued by the Christchurch City Council and reads, "Restricted Use. No entry except on essential business. Warning: This building has been damaged and its structural safety is questionable. Enter only at own risk. Subsequent aftershocks or other events may result in increased damage and danger, changing this assessment. Re-inspection may be required. The damage observed from external inspection is as described below." It goes on to set out the conditions for entry to the building and information about the inspector. The sign is so faded that the handwritten information is almost illegible.
Despite the relatively low seismicity, a large earthquake in the Waikato region is expected to have a high impact, when the fourth-largest regional population and economy and the high density critical infrastructure systems in this region are considered. Furthermore, Waikato has a deep soft sedimentary basin, which increases the regional seismic hazard due to trapping and amplification of seismic waves and generation of localized surface waves within the basin. This phenomenon is known as the “Basin Effect”, and has been attributed to the increased damage in several historic earthquakes, including the 2010-2011 Canterbury earthquakes. In order to quantitatively model the basin response and improve the understanding of regional seismic hazard, geophysical methods will be used to develop shear wave velocity profiles across the Waikato basin. Active surface wave methods involve the deployment of linear arrays of geophones to record the surface waves generated by a sledge hammer. Passive surface wave methods involve the deployment of two-dimensional seismometer arrays to record ambient vibrations. At each site, the planned testing includes one active test and two to four passive arrays. The obtained data are processed to develop dispersion curves, which describe surface wave propagation velocity as a function of frequency (or wavelength). Dispersion curves are then inverted using the Geopsy software package to develop a suite of shear wave velocity profiles. Currently, more than ten sites in Waikato are under consideration for this project. This poster presents the preliminary results from the two sites that have been tested. The shear wave velocity profiles from all sites will be used to produce a 3D velocity model for the Waikato basin, a part of QuakeCoRE flagship programme 1.
Our poster will present on-going QuakeCoRE-founded work on strong motion seismology for Dunedin-Mosgiel area, focusing on ground motion simulations for Dunedin Central Business District (CBD). Source modelling and ground motion simulations are being carried out using the SCEC (Southern California Earthquakes Center) Broad Band simulation Platform (BBP). The platform computes broadband (0-10 Hz) seismograms for earthquakes and was first implemented at the University of Otago in 2016. As large earthquakes has not been experienced in Dunedin in the time of period of instrumental recording, user-specified scenario simulations are of great value. The Akatore Fault, the most active fault in Otago and closest major fault to Dunedin, is the source focused on in the present study. Simulations for various Akatore Fault source scenarios are run and presented. Path and site effects are key components considered in the simulation process. A 1D shear wave velocity profile is required by SCEC BBP, and this is being generated to represent the Akatore-to-CBD path and site within the BBP. A 3D shear velocity model, with high resolution within Dunedin CBD, is being developed in parallel with this study (see Sangster et al. poster). This model will be the basis for developing a 3D shear wave velocity model for greater Dunedin-Mosgiel area for future ground motion simulations, using Canterbury software (currently under development).
A photograph of a sign taped to a window. The sign includes a bullet pointed list of humorous observations about Christchurch following the February 2011 earthquake. The sign reads, "You know you're from Christchurch when: you use the term 'liquefaction' and 'seismic design' in casual conversation; digging a hole and shitting in your garden is no longer weird; your mayor describes the city as munted. If he means FUBARed, you agree; weaving through car size potholes on the street is no longer weird; a shower is heaven; you have a preference of which kind of silt you'd rather shovel, dry or wet; you see tanks...driving around town; you are always noting what you are under; due to frequent aftershocks during the night, you sleep like a baby - every 10 minutes you wake up and shit yourself".