Search

found 10 results

Videos, UC QuakeStudies

A video about the Ministry of Education's decision to close Avondale Primary School. The video includes interviews with Principal Mark Scown and Julie Begg, the parent of a student at the school.

Videos, UC QuakeStudies

A video of students from Merrin School laying 185 flowers at the foot of the school flag pole on the second anniversary of the 22 February 2011 earthquake. Each flower represents one of the lives lost in the earthquake. The video also includes audio from the school's memorial service, including a poem by Alexis Blackie read by her sister Vanessa Blackie, and a speech by Principal Lisa Dillon-Robertson.

Videos, UC QuakeStudies

A video of an interview with Phillipstown Principal Toni Simpson about the Ministry of Education's plans to merge his school with Woolston Intermediate. The video was recorded hours before Education Minister Hekia Parata made her announcement about the Ministry's decisions. Simpson talks about his belief in the school, his frustration over the Ministry's decision process, and the loss to the community if the merge takes place.

Videos, UC QuakeStudies

A video of Principal Richard Patton announcing to staff and students that Chisnallwood Intermediate is to remain open. Chisnallwood is one of thirteen schools which the Ministry of Education planned to close after the 22 February 2011 earthquake.

Videos, UC QuakeStudies

A video of Principal Tony Simpson announcing to staff and parents at Phillipstown School that the Ministry of Education has decided to merge the school with Woolston School. The video also includes an interview with Tony Simpson about the merger, and his hopes for education in Christchurch in the future.

Videos, UC QuakeStudies

A video of Principal Toni Simpson telling the students and teachers of Phillipstown School about the plan to merge their school with Woolston School. Phillipstown is one of twelve schools which is set to merge in the Education Renewal Recovery Programme. The programme was created by the Minister of Education in the wake of the 2010 and 2011 Canterbury earthquakes.

Videos, UC QuakeStudies

A video of a protest against the merging of Phillipstown and Woolston Schools. Staff and students from Phillipstown School lead a march down Ferry Road to highlight the dangers children will face walking to school if Phillipstown is closed. The video also includes interviews with Phillipstown Principal Tony Simpson and Christchurch City Councillors Peter Beck and Makere Hubbard, about the protest and the merger.

Videos, UC QuakeStudies

A video of an interview with Tony Simpson, Principal of Phillipstown School, about the High Court's ruling on the merger of Woolston School and Phillipstown School. The Ministry of Education planned to merge the schools after the 22 February 2011 earthquake. However, Justice John Fogarty declared that the Ministry's consultation process failed to meet the requirements of the Education Act in two respects and that the merger was unlawful. Simpson talks about the joy he felt on hearing the news, his disappointment that it came down to a High Court decision, and his plans for the school's future.

Research papers, Victoria University of Wellington

The Mѡ=7.1 Darfield (Canterbury) earthquake struck on 4 September 2010, approximately 45 km west of Christchurch, New Zealand. It revealed a previously unknown fault (the Greendale fault) and caused billions of dollars of damage due to high peak ground velocities and extensive liquefaction. It also triggered the Mw=6.3 Christchurch earthquake on 22 February 2011, which caused further damage and the loss of 185 lives. The objective of this research was to determine the relationship between stress and seismic properties in a seismically active region using manually-picked P and S wave arrival times from the aftershock sequence between 8 September 2010-13 January 2011 to estimate shear-wave splitting (SWS) parameters, VP =VS-ratios, anisotropy (delay-time tomography), focal mechanisms, and tectonic stress on the Canterbury plains. The maximum horizontal stress direction was highly consistent in the plains, with an average value of SHmax=116 18 . However, the estimates showed variation in SHmax near the fault, with one estimate rotating by as much as 30° counter-clockwise. This suggests heterogeneity of stress at the fault, though the cause remains unclear. Orientations of the principal stresses predominantly indicate a strike-slip regime, but there are possible thrust regimes to the west and north/east of the fault. The SWS fast directions (ø) on the plains show alignment with SHmax at the majority of stations, indicating stress controlled anisotropy. However, structural effects appear more dominant in the neighbouring regions of the Southern Alps and Banks Peninsula.

Research papers, University of Canterbury Library

This poster provides a comparison between the strong ground motions observed in the 22 February 2011 Mw6.3 Christchurch earthquake with those observed in Tokyo during the 11 March 2011 Mw9.0 Tohoku earthquake. The destuction resulting from both of these events has been well documented, although tsunami was the principal cause of damage in the latter event, and less attention has been devoted to the impact of earthquake-induced ground motions. Despite Tokyo being located over 100km from the nearest part of the causative rupture, the ground motions observed from the Tohoku earthquake were significant enough to cause structural damage and also significant liquefaction to loose reclaimed soils in Tokyo Bay. The author was fortunate enough (from the perspective of an earthquake engineer) to experience first-hand both of these events. Following the Tohoku event, the athor conducted various ground motion analyses and reconniassance of the Urayasu region in Tokyo Bay affected by liquefaction in collaboration with Prof. Kenji Ishihara. This conference is therefore a fitting opportunity in which to discuss some of authors insights obtained as a result of this first hand knowledge. Figure 1 illustrates the ground motions recorded in the Christchurch CBD in the 22 February 2011 and 4 September 2010 earthquakes, with that recorded in Tokyo Bay in the 11 March 2011 Tohoku earthquake. It is evident that these three ground motions vary widely in their amplitude and duration. The CBGS ground motion from the 22 February 2011 event has a very large amplitude (nearly 0.6g) and short duration (approx. 10s of intense shaking), as a result of the causal Mw6.3 rupture at short distance (Rrup=4km). The CBGS ground motion from the 4 September 2010 earthquake has a longer duration (approx. 30s of intense shaking), but reduced acceleration amplitude, as a result of the causal Mw7.1 rupture at a short-to-moderate distance (Rrup=14km). Finally, the Urayasu ground motion in Tokyo bay during the 11 March 2011 Tohoku earthquake exhibits an acceleration amplitude similar to the 4 September 2010 CBGS ground motion, but a significantly larger duration (approx 150s of intense shaking). Clearly, these three different ground motions will affect structures and soils in different ways depending on the vibration characteristics of the structures/soil, and the potential for strength and stiffness degradation due to cumulative effects. Figure 2 provides a comparison between the arias intensities of the several ground motion records from the three different events. It can be seen that the arias intensities of the ground motions in the Christchurch CBD from the 22 February 2011 earthquake (which is on average AI=2.5m/s) is approximately twice that from the 4 September 2010 earthquake (average AI≈1.25). This is consistent with a factor of approximately 1.6 obtained by Cubrinovski et al. (2011) using the stress-based (i.e.PGA-MSF) approach of liquefaction triggering. It can also be seen that the arias intensity of the ground motions recorded in Tokyo during the 2011 Tohoku earthquake are larger than ground motions in the Christchurch CBD from the 4 September 2011 earthquake, but smaller than those of the 22 February 2011 earthquake. Based on the arias intensity liquefaction triggering approach it can therefore be concluded that the ground motion severity, in terms of liquefaction potential, for the Tokyo ground motions is between those ground motions in Christchurch CBD from the 4 September 2010 and 22 February 2011 events.