A photograph of the clock drive of the Townsend Telescope. The telescope is in the Observatory at the Christchurch Arts Centre. This image was used by Graeme Kershaw, Technician at the University of Canterbury Department of Physics and Astronomy, to identify the telescope's parts after the 22 February 2011 earthquake.
A photograph of the Townsend Telescope in the Observatory at the Christchurch Arts Centre. This image was used by Graeme Kershaw, Technician at the University of Canterbury Department of Physics and Astronomy, to identify the telescope's parts after the 22 February 2011 earthquake.
A photograph of the Townsend Telescope in the Observatory at the Christchurch Arts Centre. Graeme Kershaw, Technician at the University of Canterbury Department of Astronomy and Physics, is standing to the left. This image was used by Kershaw to identify the telescope's parts after the 22 February 2011 earthquake.
A photograph of the Townsend Telescope in the Observatory at the Christchurch Arts Centre. In the bottom right-hand corner of the photograph is a pulley for the telescope's clock drive. This is one of the pieces that went missing when the Observatory tower collapsed in the 22 February 2011 earthquake. This image was used by Graeme Kershaw, Technician at the University of Canterbury Department of Physics and Astronomy, to identify the telescope's parts after the 22 February 2011 earthquake.
A photograph of the Townsend Telescope in the Observatory at the Christchurch Arts Centre. This image was used by Graeme Kershaw, Technician at the University of Canterbury Department of Physics and Astronomy, to identify the telescope's parts after the 22 February 2011 earthquake.
A photograph of the middle section of the Townsend Telescope. The telescope is in the Observatory at the Christchurch Arts Centre. A plate on the side reads, "T Cook & Sons, 1864, York & London". This image was used by Graeme Kershaw, Technician at the University of Canterbury Department of Physics and Astronomy, to identify the telescope's parts after the 22 February 2011 earthquake.
A photograph of the middle section of the Townsend Telescope. The telescope is in the Observatory at the Christchurch Arts Centre. This image was used by Graeme Kershaw, Technician at the University of Canterbury Department of Physics and Astronomy, to identify the telescope's parts after the 22 February 2011 earthquake.
A photograph of the middle section of the Townsend Telescope. The telescope is in the Observatory at the Christchurch Arts Centre. A plate on the side reads, "T Cook & Sons, 1864, York & London". This image was used by Graeme Kershaw, Technician at the University of Canterbury Department of Physics and Astronomy, to identify the telescope's parts after the 22 February 2011 earthquake.
A photograph of the Townsend Telescope. The telescope is in the Observatory at the Christchurch Arts Centre. A plate on the side reads, "T Cook & Sons, 1864, York & London". This image was used by Graeme Kershaw, Technician at the University of Canterbury Department of Physics and Astronomy, to identify the telescope's parts after the 22 February 2011 earthquake.
During the past two decades, the focus has been on the need to provide communities with structures that undergo minimal damage after an earthquake event while still being cost competitive. This has led to the development of high performance seismic resisting systems, and advances in design methodologies, in order respect this demand efficiently. This paper presents the experimental response of four pre-cast, post-tensioned rocking wall systems tested on the shake-table at the University of Canterbury. The wall systems were designed as a retrofit solution for an existing frame building, but are equally applicable for use in new design. Design of the wall followed a performance-based retrofit strategy in which structural limit states appropriate to both the post-tensioned wall and the existing building were considered. Dissipation for each of the four post-tensioned walls was provided via externally mounted devices, located in parallel to post-tensioned tendons for re-centring. This allowed the dissipation devices to be easily replaced or inspected following a major earthquake. Each wall was installed with viscous fluid dampers, tension-compression yielding steel dampers, a combination of both or no devices at all – thus relying on contact damping alone. The effectiveness of both velocity and displacement dependant dissipation are investigated for protection against far-field and velocity-pulse ground motion characteristics. The experimental results validate the behaviour of ‘Advanced Flag-Shape’ rocking, dissipating solutions which have been recently proposed and numerically tested. Maximum displacements and material strains were well controlled and within acceptable bounds, and residual deformations were minimal due to the re-centring contribution from the post-tensioned tendons. Damage was confined to inelastic yielding (or fluid damping) of the external dampers.
It is fast becoming common practice for civil engineering infrastructure and building structures to be designed to achieve a set of performance objectives. To do so, consideration is now being given to systems capable of sustaining minimal damage after an earthquake while still being cost competitive. This has led to the development of high performance seismic resisting systems, followed by advances in design methodologies. The paper presents the experimental response of four pre-cast, post-tensioned rocking walls with high-performing dissipating solutions tested on the shake-table at the University of Canterbury. The wall systems were designed as a retrofit solution for an existing frame building however, can also be used for the design of new, high-performance structures. The use of externally mounted dampers allowed numerous dissipation schemes to be explored including mild-steel dampers (hysteretic dampers), viscous dampers, a combination of both or no dampers. The advantages of both velocity and displacement dependant dissipation was investigated for protection against strong ground motions with differing rupture characteristics i.e. far-field and near-field events. The experimental results are used to verify a proposed design procedure for post-tensioned rocking systems with supplementary hysteretic and viscous dissipation. The predicted response compared well with the measured shake-table response.