Search

found 17 results

Research papers, University of Canterbury Library

The aim of this report is to investigate the ductile performance of concrete tilt-up panels reinforced with cold-drawn mesh to improve the current seismic assessment procedure. The commercial impact of the project was also investigated. Engineering Advisory Group (EAG) guidelines state that a crack in a panel under face loading may be sufficient to fracture the mesh. The comments made by EAG regarding the performance of cold-drawn mesh may be interpreted as suggesting that assessment of such panels be conducted with a ductility of 1.0. Observations of tilt-up panel performance following the Christchurch earthquakes suggest that a ductility higher than μ=1.0 is likely to be appropriate for the response of panels to out-of-plane loading. An experimental test frame was designed to subject ten tilt-panel specimens to a cyclic quasi-static loading protocol. Rotation ductility, calculated from the force-displacement response from the test specimens, was found to range between 2.9 and 5.8. Correlation between tensile tests on 663L mesh, and data collected from instrumentation during testing confirmed that the mesh behaves as un-bonded over the pitch length of 150mm. Recommendation: Based on a moment-rotation assessment approach with an un-bonded length equal to the pitch of the mesh, a rotation ductility of μ=2.5 appears to be appropriate for the seismic assessment of panels reinforced with cold-drawn mesh.

Research papers, University of Canterbury Library

Structural engineering is facing an extraordinarily challenging era. These challenges are driven by the increasing expectations of modern society to provide low-cost, architecturally appealing structures which can withstand large earthquakes. However, being able to avoid collapse in a large earthquake is no longer enough. A building must now be able to withstand a major seismic event with negligible damage so that it is immediately occupiable following such an event. As recent earthquakes have shown, the economic consequences of not achieving this level of performance are not acceptable. Technological solutions for low-damage structural systems are emerging. However, the goal of developing a low-damage building requires improving the performance of both the structural skeleton and the non-structural components. These non-structural components include items such as the claddings, partitions, ceilings and contents. Previous research has shown that damage to such items contributes a disproportionate amount to the overall economic losses in an earthquake. One such non-structural element that has a history of poor performance is the external cladding system, and this forms the focus of this research. Cladding systems are invariably complicated and provide a number of architectural functions. Therefore, it is important than when seeking to improve their seismic performance that these functions are not neglected. The seismic vulnerability of cladding systems are determined in this research through a desktop background study, literature review, and postearthquake reconnaissance survey of their performance in the 2010 – 2011 Canterbury earthquake sequence. This study identified that precast concrete claddings present a significant life-safety risk to pedestrians, and that the effect they have upon the primary structure is not well understood. The main objective of this research is consequently to better understand the performance of precast concrete cladding systems in earthquakes. This is achieved through an experimental campaign and numerical modelling of a range of precast concrete cladding systems. The experimental campaign consists of uni-directional, quasi static cyclic earthquake simulation on a test frame which represents a single-storey, single-bay portion of a reinforced concrete building. The test frame is clad with various precast concrete cladding panel configurations. A major focus is placed upon the influence the connection between the cladding panel and structural frame has upon seismic performance. A combination of experimental component testing, finite element modelling and analytical derivation is used to develop cladding models of the cladding systems investigated. The cyclic responses of the models are compared with the experimental data to evaluate their accuracy and validity. The comparison shows that the cladding models developed provide an excellent representation of real-world cladding behaviour. The cladding models are subsequently applied to a ten-storey case-study building. The expected seismic performance is examined with and without the cladding taken into consideration. The numerical analyses of the case-study building include modal analyses, nonlinear adaptive pushover analyses, and non-linear dynamic seismic response (time history) analyses to different levels of seismic hazard. The clad frame models are compared to the bare frame model to investigate the effect the cladding has upon the structural behaviour. Both the structural performance and cladding performance are also assessed using qualitative damage states. The results show a poor performance of precast concrete cladding systems is expected when traditional connection typologies are used. This result confirms the misalignment of structural and cladding damage observed in recent earthquake events. Consequently, this research explores the potential of an innovative cladding connection. The outcomes from this research shows that the innovative cladding connection proposed here is able to achieve low-damage performance whilst also being cost comparable to a traditional cladding connection. It is also theoretically possible that the connection can provide a positive value to the seismic performance of the structure by adding addition strength, stiffness and damping. Finally, the losses associated with both the traditional and innovative cladding systems are compared in terms of tangible outcomes, namely: repair costs, repair time and casualties. The results confirm that the use of innovative cladding technology can substantially reduce the overall losses that result from cladding damage.

Audio, Radio New Zealand

Topics - If you like a quiet time, head for the Spanish city of Seville. Seville's silent summer, they're calling this. They've banned outdoor noise. Seville's been noisy; flamenco singers, old men playing dominoes, bar patrons chatting. The city councillors have now banned most of this, and they seem to have support. Gerry Brownlee the Earthquake Recovery Minister will have the final say over what happens to a piece of land near Christchurch airport, on the corner of Memorial Ave and Russley Road. It's currently zoned as rural, but industrial development could be on the cards. The NYT wonders why with so much violence in movies and games, the big Comic-con pop entertainment convention in San Diego is so peaceful. John Banks snapped phone-driving, we saw at the weekend. John Banks accused of breaking the law again, this time for using a cellphone while driving.

Audio, Radio New Zealand

Topics - ready with the pumps at last this time, but thankfully not as much rain - so far - as feared for people in the low-lying Flockton Basin in Christchurch. Labour's proposing a special court be set up just to deal with earthquake insurance claims, as part of a policy around the Christchurch rebuild. The policy would see an Earthquake Court established to try to speed up the settling of 9,755 outstanding "over cap" insurance claims. John Banks will be gone by Friday from Parliament, at the behest of the ACT party with a gentle nudge from the Nats as well. The PM thinks it's a joke that the Civilian political party, run by Ben Uffindell and named after his satirical webite, will receive $33,000 of taxpayer funding for the coming election.

Audio, Radio New Zealand

Topics - scientists are wondering how the light gets out. Maybe there is a cosmic crack in everything, because in the Journal Astrophysical Letters it is noted that there is a huge deficit of light in the universe. Owners of heritage apartments in Auckland face becoming "impoverished" according to a high-profile real estate figure, because of new laws around earthquake strengthening. Martin Dunn of City Sales says the Building Amendment Bill is "overkill". He says those trying to sell heritage apartments are having a difficult time because of the new rules. Jim Anderton, has again raised the issue of whether the Christchurch Cathedral has to come down.

Videos, UC QuakeStudies

A video of a panel discussion at the 2014 Seismics and the City forum. The theme of this section was Building Momentum, and it addressed panellists' views on the progress of the rebuild, the main obstacles, and how they can be resolved. The panellists are as follows: Christchurch Mayor Lianne Dalziel; Waimakariri Mayor David Ayers; Roger Sutton, CEO of CERA; Ian Simpson, CEO of the NZ Earthquake Commission; Peter Townsend, CEO of Canterbury Employers' Chamber of Commerce; and Joanna Norris, Editor of The Press.

Audio, Radio New Zealand

Topics - A new two million dollar fund has been launched to urgently help community groups to meet increased demand after Canterbury's earthquakes. The Need Help Now Fund is part of a special 25 million dollar earthquake allocation set up (last year) by the Canterbury Community Trust. The Mana Party leader Hone Harawira is prepared to lose senior party figures such as founding member Sue Bradford over a proposed link with Kim Dotcom's Internet Party. And what about Gareth Morgan's idea of a Universal basic income? John Minto is proposing a universal basic income paid to every New Zealander, out of government tax revenue.

Audio, Radio New Zealand

Topics - The Parole Board has decided that Teina Pora should be released from prison. Pora has served 21 years of a life sentence for murdering and raping Susan Burdett in Auckland in 1992. He continues to protest his innocence, and he'll appear before the Privy Council in London at the end of the year in an effort to clear his name. A coroner's report criticises almost every aspect of the Fire Service's response to the CTV building collapse that killed 115 people in the February 2011 Christchurch earthquake. Gordon Matenga says more people, more resources, better communication and a better structure might have improved the chances of saving more lives that day.

Audio, Radio New Zealand

Topics - it's been described as the 'Downton Effect' - a revival of more formal dinner parties as the British try to bring back fine dining. Today we learned that insurance companies have completed just 15 per cent of rebuilds and 10 per cent of over-cap repairs more than three years after the Canterbury earthquakes. A series of rallies are being held in five Australian cities today by New Zealanders protesting against legislation which denies them rights to welfare. Commuters are cautiously optimistic about a radical revamp proposed for Wellington's rush-hour rail service.

Audio, Radio New Zealand

Topics - A big study from Harvard and UC Berkeley has looked back into family trees, over centuries, to determine how social mobility has changed. The "Moon man" has used his claimed Christchurch earthquake predictions to defeat an Advertising Standards Authority complaint over his weather forecasting website. The Prime Minister John Key says Labour's flat performance in recent polls is because it's focusing on the wrong issues.

Audio, Radio New Zealand

Topics - A Christchurch resident says he just wants to get on with his life after his house was flooded for the ninth time since the 2011 earthquake. Fairfax newspapers today feature the story of an elderly gentleman who has been burgled so many times he's afraid to sleep in his own home. In Southland - A 72-year old woman has had her 30-year church membership revoked because she is living in a de facto relationship.

Audio, Radio New Zealand

Topics - Emergency services are at the scene of a cliff collapse at the Port of Lyttelton that has damaged fuel storage tanks. Police say evacuations are underway from Brittan Terrace and Cressy Terrace, with people being taken to Lyttelton Main School. Meanwhile - University of Canterbury researchers have confirmed that Christchurch is now experiencing more frequent and severe flooding due to the impact of the earthquakes.

Research papers, University of Canterbury Library

Seismically vulnerable buildings constitute a major problem for the safety of human beings. In many parts of the world, reinforced concrete (RC) frame buildings designed and constructed with substandard detailing, no consideration of capacity design principles, and improper or no inclusion of the seismic actions, have been identified. Amongst those vulnerable building, one particular typology representative of the construction practice of the years previous to the 1970’s, that most likely represents the worst case scenario, has been widely investigated in the past. The deficiencies of that building typology are related to non-ductile detailing in beam column joints such as the use of plain round bars, the lack of stirrups inside the joint around the longitudinal reinforcement of the column, the use of 180° end hooks in the beams, the use of lap splices in potential ‘plastic hinge’ regions, and substandard quality of the materials. That type of detailing and the lack of a capacity design philosophy create a very fragile fuse in the structure where brittle inelastic behaviour is expected to occur, which is the panel zone region of exterior beam column joints. The non-ductile typology described above was extensively investigated at the University of Canterbury in the context of the project ‘Retrofit Solutions for New Zealand Multi-Storey Buildings’ (2004-2011), founded by the ‘Foundation for Research, Science and Technology’ Tūāpapa Rangahau Pūtaiao. The experimental campaign prior to the research carried out by the author consisted of quasi-static tests of beam column joint subassemblies subjected to lateral loading regime, with constant and varying axial load in the column. Most of those specimens were representative of a plane 2D frame (knee joint), while others represented a portion of a space 3D frame (corner joints), and only few of them had a floor slab, transverse beams, and lap splices. Using those experiments, several feasible, cost-effective, and non-invasive retrofit techniques were developed, improved, and refined. Nevertheless, the slow motion nature of those experiments did not take into account the dynamical component inherent to earthquake related problems. Amongst the set of techniques investigated, the use of FRP layers for strengthening beam column joints is of particular interest due to its versatility and the momentum that its use has gained in the current state of the practice. That particular retrofit technique was previously used to develop a strengthening scheme suitable for plane 2D and space 3D corner beam column joints, but lacking of floor slabs. In addition, a similar scheme was not developed for exterior joints of internal frames, referred here as ‘cruciform’. In this research a 2/5 scale RC frame model building comprising of two frames in parallel (external and internal) joined together by means of floor slabs and transverse beams, with non-ductile characteristics identical to those of the specimens investigated previously by others, and also including lap splices, was developed. In order to investigate the dynamic response of that building, a series of shake table tests with different ground motions were performed. After the first series of tests, the specimen was modified by connecting the spliced reinforcement in the columns in order to capture a different failure mode. Ground motions recorded during seismic events that occurred during the initial period of the experimental campaign (2010) were used in the subsequent experiments. The hierarchy of strengths and sequence of events in the panel zone region were evaluated in an extended version of the bending moment-axial load (M-N) performance domain developed by others. That extension was required due to the asymmetry in the beam cross section introduced by the floor slab. In addition, the effect of the torsion resistance provided by the spandrel (transverse beam) was included. In order to upgrade the brittle and unstable performance of the as-built/repaired specimen, a practical and suitable ad-hoc FRP retrofit intervention was developed, following a partial retrofit strategy that aimed to strengthen exterior beam column joints only (corner and cruciform). The ability of the new FRP scheme to revert the sequence of events in the panel zone region was evaluated using the extended version of the M-N performance domain as well as the guidelines for strengthening plane joints developed by others. Weakening of the floor slab in a novel configuration was also incorporated with the purpose of reducing the flexural capacity of the beam under negative bending moment (slab in tension), enabling the damage relocation from the joint into the beam. The efficacy of the developed retrofit intervention in upgrading the seismic performance of the as-built specimen was investigated using shake table tests with the input motions used in the experiments of the as-built/repaired specimen. Numerical work aimed to predict the response of the model building during the most relevant shake table tests was carried out. By using a simple numerical model with concentrated plasticity elements constructed in Ruaumoko2D, the results of blind and post-experimental predictions of the response of the specimen were addressed. Differences in the predicted response of the building using the nominal and the actual recorded motions of the shake table were investigated. The dependence of the accuracy of the numerical predictions on the assumed values of the parameters that control the hysteresis rules of key structural members was reviewed. During the execution of the experimental campaign part of this thesis, two major earthquakes affected the central part of Chile (27 of February 2010 Maule earthquake) and the Canterbury region in New Zealand (22 February 2011 Canterbury earthquake), respectively. As the author had the opportunity to experience those events and investigate their consequences in structures, the observations related to non-ductile detailing and drawbacks in the state of the practice related to reinforced concrete walls was also addressed in this research, resulting in preliminary recommendations for the refinement of current seismic code provisions and assessment guidelines. The investigations of the ground motions recorded during those and other earthquakes were used to review the procedures related to the input motions used for nonlinear dynamic analysis of buildings as required by most of the current code provisions. Inelastic displacement spectra were constructed using ground motions recorded during the earthquakes mentioned above, in order to investigate the adequacy of modification factors used to obtain reduced design spectra from elastic counterparts. Finally a simplified assessment procedure for RC walls that incorporates capacity compatible spectral demands is proposed.

Research papers, University of Canterbury Library

In most design codes, infill walls are considered as non-structural elements and thus are typically neglected in the design process. The observations made after major earthquakes (Duzce 1999, L’Aquila 2009, Christchurch 2011) have shown that even though infill walls are considered to be non-structural elements, they interact with the structural system during seismic actions. In the case of heavy infill walls (i.e. clay brick infill walls), the whole behaviour of the structure may be affected by this interaction (i.e. local or global structural failures such as soft storey mechanism). In the case of light infill walls (i.e. non-structural drywalls), this may cause significant economical losses. To consider the interaction of the structural system with the ‘non-structural ’infill walls at design stage may not be a practical approach due to the complexity of the infill wall behaviour. Therefore, the purpose of the reported research is to develop innovative technological solutions and design recommendations for low damage non-structural wall systems for seismic actions by making use of alternative approaches. Light (steel/timber framed drywalls) and heavy (unreinforced clay brick) non-structural infill wall systems were studied by following an experimental/numerical research programme. Quasi-static reverse cyclic tests were carried out by utilizing a specially designed full scale reinforced concrete frame, which can be used as a re-usable bare frame. In this frame, two RC beams and two RC columns were connected by two un-bonded post tensioning bars, emulating a jointed ductile frame system (PRESSS technology). Due to the rocking behaviour at the beam-column joint interfaces, this frame was typically a low damage structural solution, with the post-tensioning guaranteeing a linear elastic behaviour. Therefore, this frame could be repeatedly used in all of the tests carried out by changing only the infill walls within this frame. Due to the linear elastic behaviour of this structural bare frame, it was possible to extract the exact behaviour of the infill walls from the global results. In other words, the only parameter that affected the global results was given by the infill walls. For the test specimens, the existing practice of construction (as built) for both light and heavy non-structural walls was implemented. In the light of the observations taken during these tests, modified low damage construction practices were proposed and tested. In total, seven tests were carried out: 1) Bare frame , in order to confirm its linear elastic behaviour. 2) As built steel framed drywall specimen FIF1-STFD (Light) 3) As built timber framed drywall specimen FIF2-TBFD (Light) 4) As built unreinforced clay brick infill wall specimen FIF3-UCBI (Heavy) 5) Low damage steel framed drywall specimen MIF1-STFD (Light) 6) Low damage timber framed drywall specimen MIF2-TBFD (Light) 7) Low damage unreinforced clay brick infill wall specimen MIF5-UCBI (Heavy) The tests of the as built practices showed that both drywalls and unreinforced clay brick infill walls have a low serviceability inter-storey drift limit (0.2-0.3%). Based on the observations, simple modifications and details were proposed for the low damage specimens. The details proved to be working effectively in lowering the damage and increasing the serviceability drift limits. For drywalls, the proposed low damage solutions do not introduce additional cost, material or labour and they are easily applicable in real buildings. For unreinforced clay brick infill walls, a light steel sub-frame system was suggested that divides the infill panel zone into smaller individual panels, which requires additional labour and some cost. However, both systems can be engineered for seismic actions and their behaviour can be controlled by implementing the proposed details. The performance of the developed details were also confirmed by the numerical case study analyses carried out using Ruaumoko 2D on a reinforced concrete building model designed according to the NZ codes/standards. The results have confirmed that the implementation of the proposed low damage solutions is expected to significantly reduce the non-structural infill wall damage throughout a building.

Audio, Radio New Zealand

TE URUROA FLAVELL to the Minister of Conservation: Does he agree with Parliamentary Commissioner for the Environment, Dr Jan Wright, that joint decision-making with the Minister for Energy and Resources on mining the conservation estate undermines the role of the Minister of Conservation as guardian of that estate, and how will he respond to her advice to Parliament that conservation should take precedence? Hon DAVID CUNLIFFE to the Prime Minister: Does he stand by his statement that "for most New Zealanders an indicator of how well the economy is doing is whether or not they can keep up with the cost of living"; if so, is he satisfied that they currently can? Hon TAU HENARE to the Minister of Finance: What reports has he received on inequality in New Zealand, and how do recent changes in trends compare to other countries? Hon DAVID PARKER to the Minister of Finance: Does he agree with BERL that "outside of dairy and forestry, export receipts have effectively flatlined since April 2009" and that "The risks inherent in such a narrowing of our export base should be of concern to all"; if not, why not? Dr CAM CALDER to the Minister for Tertiary Education, Skills and Employment: What announcements has he made about the Māori and Pasifika Trades Training initiative? Dr RUSSEL NORMAN to the Prime Minister: Does he stand by all his Government's decisions? PAUL FOSTER-BELL to the Minister of Housing: What progress has he made with local government in securing Housing Accords under the legislation passed last year, and how are they increasing the supply and affordability of housing? Hon ANNETTE KING to the Minister of Health: What was the original forecast cost for Health Benefits Limited and what is the revised forecast cost now, if any? MAGGIE BARRY to the Minister of Education: What recent announcements has she made on the Government's $359 million investment to raise student achievement? Hon RUTH DYSON to the Minister for Canterbury Earthquake Recovery: How much has the Canterbury Earthquake Recovery Authority spent on legal fees in the last 3 years? DENIS O'ROURKE to the Minister of Transport: When will the Government provide a comprehensive and integrated land transport plan for New Zealand? PAUL GOLDSMITH to the Minister of Revenue: What is the objective of the Government's recently announced Taxpayer's Simplification Panel?

Research papers, Lincoln University

Prognostic modelling provides an efficient means to analyse the coastal environment and provide effective knowledge for long term urban planning. This paper outlines how the use of SWAN and Xbeach numerical models within the ESRI ArcGIS interface can simulate geomorphological evolution through hydrodynamic forcing for the Greater Christchurch coastal environment. This research followed the data integration techniques of Silva and Taborda (2012) and utilises their beach morphological modelling tool (BeachMM tool). The statutory requirements outlined in the New Zealand Coastal Policy Statement 2010 were examined to determine whether these requirements are currently being complied with when applying the recent sea level rise predictions by the Intergovernmental Panel on Climate Change (2013), and it would appear that it does not meet those requirements. This is because coastal hazard risk has not been thoroughly quantified by the installation of the Canterbury Earthquake Recovery Authority (CERA) residential red zone. However, the Christchurch City Council’s (CCC) flood management area does provide an extent to which managed coastal retreat is a real option. This research assessed the effectiveness of the prognostic models, forecasted a coastline for 100 years from now, and simulated the physical effects of extreme events such as storm surge given these future predictions. The results of this research suggest that progradation will continue to occur along the Christchurch foreshore due to the net sediment flux retaining an onshore direction and the current hydrodynamic activity not being strong enough to move sediment offshore. However, inundation during periods of storm surge poses a risk to human habitation on low lying areas around the Avon-Heathcote Estuary and the Brooklands lagoon similar to the CCC’s flood management area. There are complex interactions at the Waimakariri River mouth with very high rates of accretion and erosion within a small spatial scale due to the river discharge. There is domination of the marine environment over the river system determined by the lack of generation of a distinct river delta, and river channel has not formed within the intertidal zone clearly. The Avon-Heathcote ebb tidal delta aggrades on the innner fan and erodes on the outer fan due to wave domination. The BeachMM tool facilitates the role of spatial and temporal analysis effectively and the efficiency of that performance is determined by the computational operating system.