SCIRT work holds back the tides
Articles, UC QuakeStudies
A document which describes how the new Beachville Road seawall was built.
A document which describes how the new Beachville Road seawall was built.
The purpose of this paper is to empirically investigate the effects of a major disaster on the management of human resources in the construction sector. It sets out to identify the construction skills challenges and the factors that affected skills availability following the 2010/2011 earthquakes in Christchurch. It is hoped that this study will provide insights for on-going reconstruction and future disaster response with respect to the problem of skills shortages. Design/methodology/approach A triangulation method was adopted. The quantitative method, namely, a questionnaire survey, was employed to provide a baseline description. Field observations and interviews were used as a follow-up to ascertain issues and potential shortages over time. Three focus groups in the form of research workshops were convened to gain further insight into the feedback and to investigate the validity and applicability of the research findings. Findings The earthquakes in Christchurch had compounded the pre-existing skills shortages in the country due to heightened demand from reconstruction. Skills shortages primarily existed in seismic assessment and design for land and structures, certain trades, project management and site supervision. The limited technical capability available nationally, shortage of temporary accommodation to house additional workers, time needed for trainees to become skilled workers, lack of information about reconstruction workloads and lack of operational capacity within construction organisations, were critical constraints to the resourcing of disaster recovery projects. Research limitations/implications The research findings contribute to the debate on skills issues in construction. The study provides evidence that contributes to an improved understanding of the industry’s skills vulnerability and emerging issues that would likely exist after a major disaster in a resource-limited country such as New Zealand. Practical implications From this research, decision makers and construction organisations can gain a clear direction for improving the construction capacity and capability for on-going reconstruction. Factors that affected the post-earthquake skills availability can be considered by decision makers and construction organisations in their workforce planning for future disaster events. The recommendations will assist them in addressing skills shortages for on-going reconstruction. Originality/value Although the study is country-specific, the findings show the nature and scale of skills challenges the construction industry is likely to face following a major disaster, and the potential issues that may compound skills shortages. It provides lessons for other disaster-prone countries where the resource pool is small and a large number of additional workers are needed to undertake reconstruction.
There are many swaths of land that are deemed unsuitable to build on and occupy. These places, however, are rarely within an established city. The Canterbury earthquakes of 2010 and 2011 left areas in central Christchurch with such significant land damage that it is unlikely to be re-inhabited for a considerable period of time. These areas are commonly known as the ‘Red Zone’.This thesis explores redevelop in on volatile land through innovative solutions found and adapted from the traditional Indonesian construction techniques. Currently, Indonesia’s vernacular architecture sits on the verge of extinction after a cultural shift towards the masonry bungalow forced a rapid decline in their occupation and construction. The 2004 Indian Ocean earthquake and tsunami illustrated the bungalows’ poor performance in the face of catastrophic seismic activity, being outperformed by the traditional structures. This has been particularly evident in the Rumah Aceh construction of the Aceh province in Northern Sumatra. Within a New Zealand context an adaptation and modernisation of the Rumah Aceh construction will generate an architectural response not currently accepted under the scope of NZS 3604:2011; the standards most recent revision following the Canterbury earthquake of 2010 concerning timber-based seismic performance. This architectural exploration will further address light timber structures, their components, sustainability and seismic resilience. Improving new builds’ durability as New Zealand moves away from the previously promoted bungalow model that extends beyond residential and into all aspects of New Zealand built environment.
Unreinforced masonry churches in New Zealand, similarly to everywhere else in the word have proven to be highly vulnerable to earthquakes, because of their particular construction features. The Canterbury (New Zealand) earthquake sequence, 2010-2011 caused an invaluable loss of local architectural heritage and of churches, as regrettably, some of them were demolished instead of being repaired. It is critical for New Zealand to advance the data collection, research and understanding pertaining to the seismic performance and protection of church buildings, with the aim to:
Six years on from the Christchurch earthquakes, one in five residents of the city say the disaster is still taking its toll. The latest wellbeing survey by the Canterbury DHB found people living in north-east and east Christchurch were the most likely to be suffering from issues such as anxiety, from ongoing aftershocks, being in a damaged environment, and surrounded by construction.
The Canterbury earthquakes of 2010 and 2011 caused significant damage and disruption to the city of Christchurch, New Zealand. A Royal Commission was established to report on the causes of building failure as a result of the earthquakes as well as look at the legal and best-practice requirements for buildings in New Zealand Central Business Districts. The Royal Commission made 189 recommendations on a variety of matters including managing damaged buildings after an earthquake, the adequacy of building codes and standards, and the processes of seismic assessments of existing buildings to determine their earthquake vulnerability. In response the Ministry of Business, Innovation and Employment, the agency responsible for administering building regulation in New Zealand, established a work programme to assist with the Canterbury rebuild and to implement the lessons learned throughout New Zealand. The five primary work streams in the programme are: • Facilitating the Canterbury Rebuild • Structural Performance and Design Standards • Geotechnical and structural guidance • Existing Building Resilience • Post Disaster Building Management This paper provides more detail on each of the work streams. There has been significant collaboration between the New Zealand Government and the research community, technical societies, and engineering consultants, both within New Zealand and internationally, to deliver the programme and improve the resilience of the New Zealand built environment. This has presented major challenges for an extremely busy industry in the aftermath of the Canterbury earthquakes. The paper identifies the items of work that have been completed and the work that is still in progress at the time of writing.
As cities evolve, change and grow, the need and desire for adaptable architecture becomes evident across the nation. Architecture needs to undertake techniques that are flexible in order to adapt and align with the development of future generations in New Zealand. The Education industry is a primary example of a sector which requires flexibility within both classroom architectural form and interior configuration. This is a resultant of the recently updated Ministry of Education requirements; which state that every new classroom built or renovated nationwide, must implement the MoE classroom design standards for Innovative Learning Environments. ILE teaching spaces are configured as an open plan interior, supporting flexibility in classroom arrangement and teaching techniques. ILE classrooms are capable of evolving and adapting as educational practices evolve and change, allowing schools to remain modern and future focused. As part of this movement to ILE, the Ministry of Education has also recently made an attempt to improve the quality of temporary classrooms. This has been done by looking into the initiation of a programme that utilizes relocatable classroom buildings. Relocatable classrooms have been selected for multiple reasons, primarily flexibility. Flexibility is key for a school environment as it allows the school to actively respond to fluctuating school rolls. It is anticipated that the programme will provide a faster delivery process with a standardised design that allows the classrooms to be relocated from one school to another with relative ease. Following the devastating February 2011 earthquake the Greater Christchurch Region, the Education sector is in the midst of the Canterbury Schools Rebuild Programme. As a repercussion of this natural disaster, the majority of Christchurch schools have redevelopment or rebuild projects in progress, with preliminary design phases already in action for a small group of select schools regarded as high priority. The primary funding for these projects are sourced from insurance money, implementing tight budget restrictions, affecting the architectural design, quality and speed of the construction and repair works. The available funding limits the affordable classroom options to basic teaching spaces that have been stripped back to simple architectural forms, dictating not only the re-design, but also how our future generations will learn. Thus causing the development of the new student-led learning ILE concept to become controlled by existing construction techniques and the Rebuild Programmes budget restrictions. This thesis focuses on the future proofing of New Zealand schools by providing an affordable and time efficient alternative option to the current static, traditional construction, an option that has the ability to cater to the unpredictable fluctuating school rolls across the nation. This has been done by developing a prefabricated system for standalone classroom blocks. These blocks have the ability to be relocated between different school sites, dynamically catering to the unpredictable school roll numbers experienced across New Zealand. This site flexibility is reflected with the interior flexibility in the classrooms, enhancing the internal teaching space composition and challenges the existing design standards set by the Ministry of Education for Innovative Learning Environments. This system is called “Flexi-Ed”. Flexibility has been a key driver for this thesis, as the prefabricated structure is have to be flexible in three ways; first in the sense of being easy to assemble and disassemble. Second by offering flexible interior learning environments and thirdly the joints of the structure are designed with the ability to be flexible in order to cope with seismic activity. These three principles will provide schools with long term flexibility, minimal on-site interruption and heighten the standard of ILE across the nation. I strive to provide schools with long term flexibility and minimal site interruption, whilst heightening the standard of Innovative Learning Environments across New Zealand.
On 14 November 2016 a magnitude Mw 7.8 earthquake struck the upper South Island of New Zealand with effects also being observed in the capital city, Wellington. The affected area has low population density but is the largest wine production region in New Zealand and also hosts the main national highway and railway routes connecting the country’s three largest cities of Auckland, Wellington and Christchurch, with Marlborough Port in Picton providing connection between the South and North Islands. These transport facilities sustained substantial earthquake related damage, causing major disruptions. Thousands of landslides and multiple new faults were counted in the area. The winery facilities and a large number of commercial buildings and building components (including brick masonry veneers, historic masonry construction, and chimneys), sustained damage due to the strong vertical and horizontal acceleration. Presented herein are field observations undertaken the day immediately after the earthquake, with the aim to document earthquake damage and assess access to the affected area.
PHIL TWYFORD to the Minister for Building and Construction: Does he agree with Mainfreight founder and Chairman Bruce Plested that housing is a “social disgrace”, that the market cannot sort out this problem, and that real leadership and intestinal fortitude is needed now? JONATHAN YOUNG to the Minister of Finance: What reports has he received on real after-tax wages rising in New Zealand? CHRIS HIPKINS to the Minister of Education: Will she apologise on behalf of the Government for the flawed handling of the Canterbury school mergers and closures after the 2011 earthquakes; if not, why not? ANDREW BAYLY to the Minister for Building and Construction: What progress has the Government made in improving the tenancy laws and guidance for dealing with the problem of methamphetamine testing and contamination? CARMEL SEPULONI to the Associate Minister for Social Housing: What motels has the Government purchased in response to the increased emergency housing demand, and how much has this cost? RON MARK to the Prime Minister: Does he stand by all his statements on the Clutha-Southland electorate office issue even if facts known to him make doing so extraordinarily difficult? MAUREEN PUGH to the Minister of Corrections: How is Budget 2017 investing in rehabilitation and reintegration outcomes for offenders? Hon DAVID PARKER to the Minister of Local Government: Does she agree with the Prime Minister’s answer yesterday that drinking-water contamination in Havelock North was “about local government performance and overseeing ratepayer-funded assets whose purpose is to deliver clean and healthy water to its local people. The extensive inquiry into that incident was warranted by widespread illness in the area ... it is about local body performance in overseeing their clean water system”? BRETT HUDSON to the Minister of Local Government: What recent announcements has she made regarding Wellington’s resilience to natural hazards? JULIE ANNE GENTER to the Minister of Transport: Will the Government start building rail to the airport sooner if Auckland hosts the next America’s Cup regatta or will Aucklanders still have to wait 30 years? STUART NASH to the Minister of Police: Does she have any concerns about any of the results of the New Zealand Police Workplace Survey 2017; if so, what in particular? ALASTAIR SCOTT to the Associate Minister of Education: What recent announcements has he made to improve school infrastructure in the Wairarapa?
Existing unreinforced masonry (URM) buildings are often composed of traditional construction techniques, with poor connections between walls and diaphragms that results in poor performance when subjected to seismic actions. In these cases the application of the common equivalent static procedure is not applicable because it is not possible to assure “box like” behaviour of the structure. In such conditions the ultimate strength of the structure relies on the behaviour of the macro-elements that compose the deformation mechanisms of the whole structure. These macroelements are a single or combination of structural elements of the structure which are bonded one to each other. The Canterbury earthquake sequence was taken as a reference to estimate the most commonly occurring collapse mechanisms found in New Zealand URM buildings in order to define the most appropriate macroelements.
METIRIA TUREI to the Minister for the Environment: Ki Te Minita mō Te Taiao: Ka tukua e ngā paerewa e whakaarohia akehia nei mō te pai ake o te wai i roto i te pūhera Wai Mā, te kaha kē atu, te iti kē iho rānei o te uru atu o te tūkinotanga ki roto i ō tātou awa wai, e ngā mea whakakapi? Translation: Do the proposed standards for water quality in the Clean Water package allow more pollution or less to enter our waterways than the ones they will replace? BRETT HUDSON to the Minister of Finance: How much is the Government committing to spend on infrastructure over the next 4 years? ANDREW LITTLE to the Prime Minister: Given his predecessor told the Pike River families, “I’m here to give you absolute reassurance we’re committed to getting the boys out, and nothing’s going to change that”, when, if ever, will he be announcing the re-entry of the drift? STUART SMITH to the Minister of Transport: What announcements has he made recently regarding the Government’s commitment to reinstate key transport links following the Kaikōura earthquake? JACINDA ARDERN to the Minister for Children: When was she first notified that the Ministry for Vulnerable Children Oranga Tamariki, or its predecessor CYF, were placing children and younger persons in a hotel or motel for short-term care without a supervisor, and what was her first action, if any? MELISSA LEE to the Minister of Health: Can he confirm that 55,000 care and support workers will share in the $2 billion pay equity settlement announced on 18 April 2017? GRANT ROBERTSON to the Minister of Finance: Does he agree with the Dominion Post editorial that his Government has “singularly failed to answer the pressures of Auckland”; if not, why does he think they would write this? ANDREW BAYLY to the Minister for Building and Construction: How do the latest reports on the level of building activity in Auckland and nationwide for the month, quarter, and year compare with 2016? Rt Hon WINSTON PETERS to the Prime Minister: Does he stand by all his statements; if so, how? PHIL TWYFORD to the Minister of Transport: Why has the completion of the $2.4 billion Western Ring Route been delayed, and when can Aucklanders expect the new motorway to be open? EUGENIE SAGE to the Minister of Conservation: Is it Government policy to increase the logging of native forests on West Coast conservation land? Dr MEGAN WOODS to the Minister supporting Greater Christchurch Regeneration: Does she agree that the first homes in the East Frame will be completed 5 months ahead of schedule? Questions to Members CLARE CURRAN to the Chairperson of the Commerce Committee: Does she intend to call for further submissions on the petition of Dame Fiona Kidman before it is reported back to the House, in light of the recently released footage shot inside the drift of the Pike River mine?
Worldwide turbidity is a huge concern for the health of aquatic ecosystems. Human activities on the land such as construction, deforestation, agriculture, and mining all have impacts on the amount of particulate solids that enter the world’s waterways. These particulate solids can pose a number of risks to aquatic life, but primary among them is the turbidity that they create in the water column. The way suspended solids interact with light creates cloudiness in the water which interferes with the vision, and visually mediated behaviours of aquatic organisms, particularly fish. The Avon-Heathcote estuary of Christchurch, New Zealand, is one such body of water that is subject to tremendous variation in turbidity, no doubt exacerbated by the destruction of Christchurch in the 2010 and 2011 earthquakes, as well as the subsequent ongoing rebuild. The yellow eyed mullet, Aldrichetta Forsteri, is one species that is common with the estuary, and uses it as a habitat for breeding. Though very common throughout New Zealand, and even a part of the catch of commercial fisheries, the yellow eyed mullet is a largely unstudied organism, with virtually no published scientific enquiry based on the species. The present work assesses how several behaviours of the yellow eyed mullet are effected by acute turbidity at 10, 50, 90, 130 and 170 NTU, finding that: 1) The optomotor response of mullet to 2.5 mm stripes drops to insignificant levels between 10 and 50 NTU, 2) The swimming activity of the yellow eyed mullet is highest at 10 NTU and drops to a significantly lower level at higher turbidities, 3) The grouping behaviour of small groups of yellow eyed mullet are unchanged by increasing turbidity levels, 4) that yellow eyed mullet do not exhibit significantly different behavioural response to a simulated predator at any of the tested turbidities, and 5) that yellow eyed mullet to do significantly alter their oxygen consumption during exposure to the turbidities in an increasing series. The results presented in these studies indicate that turbidites above 50 NTU pose a significant risk to the lifestyle of the yellow eyed mullet, potentially impacting their ability to perceive their surroundings, feed, school, and avoid predation. Future work has a lot of ground to cover to more precisely determine the relationship between yellow eyed mullet behaviour and physiology, and the turbidity of their environment. In particular, future work should focus more closely on the turbidities between 10 and 50 NTU, as well as looking to field work to see what the predominant predators of the mullet are, and specifically whether turbidity increases or decreases the risk of mullet being subject to avian predation. There is also considerable scope for studies on the effects of chronic turbidity upon mullet, which will add understand to the predicament of escalating turbidity and its effects upon this common and yet mysterious native fish.