Search

found 32 results

Videos, UC QuakeStudies

A video of a media tour inside the earthquake-damaged Hotel Grand Chancellor. The video includes footage of the eastern side of the ground floor of the hotel, the stairwells, some of the rooms, and the view through an opening in the side of the building. It also includes an interview with Jack Harris from Fletchers Construction about the work that is being done to support the structure.

Videos, UC QuakeStudies

A video of an interview with Earthquake Recovery Minister Gerry Brownlee and Frank Delli Cicchi, the Grand Central Group Australian and New Zealand general manager, about the demolition of the Hotel Grand Chancellor. The Grand Chancellor is the tallest building in Christchurch, and was severely damaged during the 22 February 2011 earthquake. Fletcher Construction have been chosen to demolish the building.

Videos, UC QuakeStudies

A video of a tour through the Christchurch central city Red Zone. The video includes footage of Armagh Street, Madras Street, Latimer Square, St John's Anglican Church, Hereford Street, the Octagon Live restaurant, the Design and Arts building, the High Street mall, and the Grand Chancellor Hotel. It also includes footage of construction workers cutting up metal beams, and clearing rubble from a building on Manchester Street.

Images, UC QuakeStudies

A large pile of liquefaction silt at a dump on Breezes Road. The photographer comments, "Breezes Road and Anzac Drive have recently opened but are now home to a brand new range of hills thanks to mountains of silt that have been collected by the hard working construction guys that have done a sterling job on the road there".

Images, UC QuakeStudies

Large piles of liquefaction silt at a dump on Breezes Road. One of the piles is covered with black plastic and weighted down with tyres. Trucks and diggers are adding more silt to the piles. The photographer comments, "Breezes Road and Anzac Drive have recently opened but are now home to a brand new range of hills thanks to mountains of silt that have been collected by the hard working construction guys that have done a sterling job on the road there".

Images, UC QuakeStudies

Large piles of liquefaction silt at a dump on Breezes Road. One of the piles is covered with black plastic and weighted down with tyres. Trucks and diggers are adding more silt to the piles. The photographer comments, "Breezes Road and Anzac Drive have recently opened but are now home to a brand new range of hills thanks to mountains of silt that have been collected by the hard working construction guys that have done a sterling job on the road there".

Images, UC QuakeStudies

A photograph looking east down Gloucester Street from near the Manchester Street intersection. Members of the Wellington Emergency Management Office Emergency Response Team and construction workers are walking down the street. To their right is the new Press House building with many broken windows. In the foreground, the Coachman building has sustained earthquake damage to the façade. Wire fences have been placed around the building as a cordon.

Research papers, University of Canterbury Library

This paper outlines the deconstruction, redesign and reconstruction of a 2 storey timber building at the University of Canterbury, in Christchurch, New Zealand. The building consists of post tensioned timber frames and walls for lateral and gravity resistance, and timber concrete composite flooring. Originally a test specimen, the structure was subjected to extreme lateral displacements in the University structural testing laboratory. This large scale test of the structural form showed that post tensioned timber can withstand high levels of drift with little to no structural damage in addition to displaying full recentering characteristics with no residual displacements, a significant contributor to post earthquake cost. The building subsequently has been dismantled and reconstructed as offices for the Structural Timber Innovation Company (STIC). In doing this over 90% of the materials have been recycled which further enhances the sustainability of this construction system. The paper outlines the necessary steps to convert the structure from a test specimen into a functioning office building with minimal wastage and sufficient seismic resistance. The feasibility of recycling the structural system is examined using the key indicators of cost and time.

Research papers, University of Canterbury Library

The NMIT Arts & Media Building is the first in a new generation of multistorey timber structures. It employs an advanced damage avoidance earthquake design that is a world first for a timber building. Aurecon structural engineers are the first to use this revolutionary Pres-Lam technology developed at the University of Canterbury. This technology marks a fundamental change in design philosophy. Conventional seismic design of multi-storey structures typically depends on member ductility and the acceptance of a certain amount of damage to beams, columns and walls. The NMIT seismic system relies on pairs of coupled LVL shear walls that incorporate high strength steel tendons post-tensioned through a central duct. The walls are centrally fixed allowing them to rock during a seismic event. A series of U-shaped steel plates placed between the walls form a coupling mechanism, and act as dissipators to absorb seismic energy. The design allows the primary structure to remain essentially undamaged while readily replaceable connections act as plastic fuses. In this era where sustainability is becoming a key focus, the extensive use of timber and engineered-wood products such as LVL make use of a natural resource all grown and manufactured within a 100km radius of Nelson. This project demonstrates that there are now cost effective, sustainable and innovative solutions for multi-story timber buildings with potential applications for building owners in seismic areas around the world.

Images, Alexander Turnbull Library

Three people stand looking down at a small model of the 'Christchurch CBD'. One of the people says 'Love the safer low-rise plan What's the scale?' A second man says 'Scale? Er this is the actual size!' Context: Christchurch Mayor Bob Parker has dedicated the draft plan for a new-look Christchurch CBD to those lost in the February earthquake. The CBD will be about a quarter of its original size under the draft plan which was unanimously adopted by the council today. (TVNZ 11 August 2011) Quantity: 1 digital cartoon(s).

Images, Alexander Turnbull Library

Text reads 'Uses for Christchurch rubble?...' The cartoon shows a bridge made partially of earthquake rubble leading from Lyttelton Harbour to Diamond Harbour on Banks Peninsula. Someone in a van says 'At long last... A bridge to Diamond Harbour!' And someone else says 'And somewhere to fish!' Context - Rubble from the earthquake may be used for the construction of watersides and bridges. This cartoon is a fanciful use for Christchurch earthquake rubble. Currently a ferry connects Diamond Harbour to Lyttelton, on the harbour's northern shore. In combination with buses from Lyttelton to downtown Christchurch, this allows residents of Diamond Bay to commute to the city. Quantity: 1 digital cartoon(s).

Research papers, University of Canterbury Library

Recent advances in timber design at the University of Canterbury have led to new structural systems that are appropriate for a wide range of building types, including multi-storey commercial office structures. These buildings are competitive with more traditional construction materials in terms of cost, sustainability and structural performance. This paper provides seismic design recommendations and analytical modelling approaches, appropriate for the seismic design of post-tensioned coupled timber wall systems. The models are based on existing seismic design theory for precast post-tensioned concrete, modified to more accurately account for elastic deformation of the timber wall systems and the influence of the floor system. Experimental test data from a two storey post-tensioned timber building, designed, constructed and tested at the University of Canterbury is used to validate the analytical models.

Audio, Radio New Zealand

Questions to Ministers 1. CRAIG FOSS to the Minister of Finance: What challenges does the Government face in putting together Budget 2011? 2. Dr RUSSEL NORMAN to the Prime Minister: Does he stand by his pre-Budget statement "The key sector which is not saving right now is the Government"; if so, what steps has he taken to increase government revenue? 3. Dr RUSSEL NORMAN to the Prime Minister: Does he stand by his statement "…we can use this time to transform the economy to make us stronger…"; if so, does this transformation involve an economy that uses fewer natural resources and produces less pollution? 4. Hon PHIL GOFF to the Prime Minister: Does he stand by all his statements on KiwiSaver? 5. NICKY WAGNER to the Minister for Canterbury Earthquake Recovery: What reports has he received on progress made to provide winter heating for residents affected by the Canterbury earthquakes? 6. Hon ANNETTE KING to the Prime Minister: What advice did he receive from the most recent food bank he visited about the current cost of living? 7. JACQUI DEAN to the Minister for the Environment: What practical initiatives is the Government taking in preparation for Rugby World Cup 2011 to protect the environment and New Zealand's important clean green brand? 8. Hon DAVID CUNLIFFE to the Minister of Finance: What was the annual rate of GDP growth for the year ended December 2010 projected in Budget 2010, and what was the actual rate of growth for that period according to Statistics New Zealand? 9. AARON GILMORE to the Minister of Education: What recent decisions have been made regarding schooling in Christchurch? 10. SUE MORONEY to the Minister of Education: When was construction completed on the new early childhood education centre at Weymouth Primary School and why is the centre empty? 11. COLIN KING to the Minister of Agriculture: What steps has the Government recently taken to support innovation in the Manuka honey industry? 12. CARMEL SEPULONI to the Minister of Justice: Does he stand by his statement "This Government is committed to ensuring that everyone…has access to justice"?

Research papers, University of Canterbury Library

In order to provide information related to seismic vulnerability of non-ductile reinforced concrete (RC) frame buildings, and as a complementary investigation on innovative feasible retrofit solutions developed in the past six years at the University of Canterbury on pre-19170 reinforced concrete buildings, a frame building representative of older construction practice was tested on the shake table. The specimen, 1/2.5 scale, consists of two 3-storey 2-bay asymmetric frames in parallel, one interior and one exterior, jointed together by transverse beams and floor slabs. The as-built (benchmark) specimen was first tested under increasing ground motion amplitudes using records from Loma Prieta Earthquake (California, 1989) and suffered significant damage at the upper floor, most of it due to lap splices failure. As a consequence, in a second stage, the specimen was repaired and modified by removing the concrete in the lap splice region, welding the column longitudinal bars, replacing the removed concrete with structural mortar, and injecting cracks with epoxy resin. The modified as-built specimen was then tested using data recorded during Darfield (New Zealand, 2010) and Maule (Chile, 2010) Earthquakes, with whom the specimen showed remarkably different responses attributed to the main variation in frequency content and duration. In this contribution, the seismic performance of the three series of experiments are presented and compared.

Research papers, University of Canterbury Library

An extensive research program is on-going at the University of Canterbury, New Zealand to develop new technologies to permit the construction of multi-storey timber buildings in earthquake prone areas. The system combines engineered timber beams, columns and walls with ductile moment resisting connections using post-tensioned tendons and eventually energy dissipaters. The extensive experimental testing on post-tensioned timber building systems has proved a remarkable lateral response of the proposed solutions. A wide number of post-tensioned timber subassemblies, including beam-column connections, single or coupled walls and column-foundation connections, have been analysed in static or quasi-static tests. This contribution presents the results of the first dynamic tests carried out with a shake-table. Model frame buildings (3-storey and 5-storey) on one-quarter scale were tested on the shake-table to quantify the response of post-tensioned timber frames during real-time earthquake loading. Equivalent viscous damping values were computed for post-tensioned timber frames in order to properly predict their response using numerical models. The dynamic tests were then complemented with quasi-static push and pull tests performed to a 3-storey post-tensioned timber frame. Numerical models were included to compare empirical estimations versus dynamic and quasi-static experimental results. Different techniques to model the dynamic behaviour of post-tensioned timber frames were explored. A sensitivity analysis of alternative damping models and an examination of the influence of designer choices for the post-tensioning force and utilization of column armouring were made. The design procedure for post-tensioned timber frames was summarized and it was applied to two examples. Inter-storey drift, base shear and overturning moments were compared between numerical modelling and predicted/targeted design values.