Search

found 34 results

Images, UC QuakeStudies

The damaged Ozone Hotel on Marine Parade. Fallen bricks lie on the ground in front of the building, which is surrounded by security fencing. The photographer comments, "A bike ride to New Brighton and the beach 3 weeks after the Feb 22 quake. Roads were still very rough and under reconstruction. Some buildings are still standing. but don't look too healthy".

Images, UC QuakeStudies

A sign on a fence on Marine Parade in North New Brighton reads "We need your support. We say yes to a new local high school. Northeast Secondary Education Committee." The photographer comments, "A bike ride to New Brighton and the beach 3 weeks after the Feb 22 quake. Roads were still very rough and under reconstruction. I think this issue may be shelved for a while. Unless Shirley Boys High and Avonside Girls High can't be rebuilt, of course".

Images, UC QuakeStudies

Rubble from TJ's Kazbah on the corner of Marine Parade and Bowhill Road. The Ozone Hotel is visible in the foreground. The photographer comments, "A bike ride to New Brighton and the beach 3 weeks after the Feb 22 quake. Roads were still very rough and under reconstruction. There was a building on the corner, but not now".

Images, UC QuakeStudies

The InTentCity 6.3 Cafe, which was set up in a tent in the Law car park while University of Canterbury buildings were closed for structural testing. The photographer comments, "The University restarts its teaching, and the techies in e-learning move out of NZi3. New cafe - InTentCity. (Get it...?)".

Images, UC QuakeStudies

Lei Zhang, a member of the University of Canterbury's E-Learning team, in their temporary office in the University Printery building. The photographer comments, "The University restarts its teaching, and the techies in e-learning move out of NZi3. We are sharing an office at the printery building. Richard Holliday and Aimee Leaning do their pre-press and outsourcing work, while Lei configures a new video streaming system".

Research Papers, Lincoln University

Tree mortality is a fundamental process governing forest dynamics, but understanding tree mortality patterns is challenging because large, long-term datasets are required. Describing size-specific mortality patterns can be especially difficult, due to few trees in larger size classes. We used permanent plot data from Nothofagus solandri var. cliffortioides (mountain beech) forest on the eastern slopes of the Southern Alps, New Zealand, where the fates of trees on 250 plots of 0.04 ha were followed, to examine: (1) patterns of size-specific mortality over three consecutive periods spanning 30 years, each characterised by different disturbance, and (2) the strength and direction of neighbourhood crowding effects on sizespecific mortality rates. We found that the size-specific mortality function was U-shaped over the 30-year period as well as within two shorter periods characterised by small-scale pinhole beetle and windthrow disturbance. During a third period, characterised by earthquake disturbance, tree mortality was less size dependent. Small trees (,20 cm in diameter) were more likely to die, in all three periods, if surrounded by a high basal area of larger neighbours, suggesting that sizeasymmetric competition for light was a major cause of mortality. In contrast, large trees ($20 cm in diameter) were more likely to die in the first period if they had few neighbours, indicating that positive crowding effects were sometimes important for survival of large trees. Overall our results suggest that temporal variability in size-specific mortality patterns, and positive interactions between large trees, may sometimes need to be incorporated into models of forest dynamics.