This thesis is a creative and critical exploration of how transmedia storytelling meshes with political documentary’s nature of representing social realities and goals to educate and promote social change. I explore this notion through Obrero (“worker”), my independently produced transmedia and transjournalistic documentary project that explores the conditions and context of the Filipino rebuild workers who migrated to Christchurch, New Zealand after the earthquake in 2011. While the project should appeal to New Zealanders, it is specifically targeted at an audience from the Philippines. Obrero began as a film festival documentary that co-exists with strategically refashioned Web 2.0 variants, a social network documentary and an interactive documentary (i-doc). Using data derived from the production and circulation of Obrero, I interrogate how the documentary’s variants engage with differing audiences and assess the extent to which this engagement might be effective. This thesis argues that contemporary documentary needs to re-negotiate established film aesthetics and practices to adapt in the current period of shifting technologies and fragmented audiences. Documentary’s migration to new media platforms also creates a demand for filmmakers to work with a transmedia state of mind—that is, the capacity to practise the old canons of documentary making while comfortably adjusting to new media production praxis, ethics, and aesthetics. Then Obrero itself, as the creative component of this thesis, becomes an instance of research through creative practice. It does so in two respects: adding new knowledge about the context, politics, and experiences of the Filipino workers in New Zealand; and offering up a broader model for documentary engagement, which I analyse for its efficacy in the digital age.
Soil-structure interaction (SSI) has been widely studied during the last decades. The influence of the properties of the ground motion, the structure and the soil have been addressed. However, most of the studies in this field consider a stand-alone structure. This assumption is rarely justifiable in dense urban areas where structures are built close to one another. The dynamic interaction between adjacent structures has been studied since the early 1970s, mainly using numerical and analytical models. Even though the early works in this field have significantly contributed to understanding this problem, they commonly consider important simplifications such as assuming a linear behaviour of the structure and the soil. Some experimental works addressing adjacent structures have recently been conducted using geotechnical centrifuges and 1g shake tables. However, further research is needed to enhance the understanding of this complex phenomenon. A particular case of SSI is that of structures founded in fine loose saturated sandy soil. An iconic example was the devastating effects of liquefaction in Christchurch, New Zealand, during the Canterbury earthquake in 2011. In the case of adjacent structures on liquefiable soil, the experimental evidence is even scarcer. The present work addresses the dynamic interaction between adjacent structures by performing multiple experimental studies. The work starts with two-adjacent structures on a small soil container to expose the basics of the problem. Later, results from tests considering a more significant number of structures on a big laminar box filled with sand are presented. Finally, the response of adjacent structures on saturated sandy soil is addressed using a geotechnical centrifuge and a large 1g shake table. This research shows that the acceleration, lateral displacement, foundation rocking, damping ratio, and fundamental frequency of the structure of focus are considerably affected by the presence of neighbouring buildings. In general, adjacent buildings reduced the dynamic response of the structure of focus on dry sand. However, the acceleration was amplified when the structures had a similar fundamental frequency. In the case of structures on saturated sand, the presence of adjacent structures reduced the liquefaction potential. Neighbouring structures on saturated sand also presented larger rotation of the footing and lateral displacement of the top mass than that of the stand-alone case.