Search

found 31 results

Images, UC QuakeStudies

A digitally manipulated photograph of a shop security shutter. The photographer comments, "Sometimes before you feel the ground rolling any metal shutters around start their rattling noises as if someone is shaking them".

Images, UC QuakeStudies

Twisted reinforcing rods tangled in a pile of rubble. The photographer comments, "It is a horrible sight when a transformer runs out of electricity. Anyone got any jumper cables?".

Images, Canterbury Museum

One round metal and plastic badge featuring a stylised image of a panda on a pink background; across the top runs the word 'love' and across the bottom the words 'Grand Ground Dreamu'. This metal and plastic badge featuring a stylised image of a panda on a pink background from the Japanese brand Grand Ground Dreamu, was left at the site of the ...

Images, Canterbury Museum

One round metal and plastic badge with a stylised image of a rabbit wearing a yellow and red bow on a green background; across the bottom are the words 'Grand Ground Dreamu' and in the background is a rainbow. This metal and plastic badge featuring a stylised image of a rabbit on a green background from the Japanese brand Grand Ground Dreamu, w...

Images, UC QuakeStudies

The badly twisted Medway Street footbridge. The photographer comments, "The September 4th 2010 earthquake in Christchurch was so violent that the banks of the Avon River moved towards each other. This footbridge being metal had to twist sideways to release the pressure of being pushed from both river banks. It looked like it had been wrung out like a wet towel".

Images, UC QuakeStudies

Corrogated roofing from the demolition of the QEII complex. The photographer comments, "This collection of galvanised roofing looks so photogenic as I walked around the partly demolished Queen Elizabeth stadium and swimming pool".

Images, UC QuakeStudies

The roof of this collapsed building on Atlas Lane has fallen almost intact on top of the rubble. The photographer comments, "Whenever I go past this place it reminds me of a sinking ship".

Images, UC QuakeStudies

A pigeon perches in the beams of a damaged building. The photographer comments, "The building next door was demolished after the Christchurch earthquake, which exposed the side of this building with it's very old corrugated iron walls. Some of the sheeting was damaged and exposed parts of the interior. The pigeon was sitting on a bit of wood with the beam above it had a very serious crack. I think you would be nervous as well".

Images, UC QuakeStudies

Pipes lead into a shipping container. The photographer comments, "In Christchurch containers are so very versatile: They are used as barricades, supports, homes, shops, art galleries, artworks, Malls, pubs and bars, Thai takeaways and now sewage works".

Images, UC QuakeStudies

Warning tape on the gate of a residential property near Cranmer Square. The photographer comments, "The yellow tape was put on the gate to warn property [owners] that the house beyond was unsafe. Now there is no house, but by the cobwebs on the handle the tape is doing a great job".

Images, Canterbury Museum

One circular metal and plastic badge featuring an image of a girl and the words 'We [heart] you Weng'. This personalised badge featuring an image of a girl and a personal message of love, was left at the site of the Canterbury Television (CTV) building after the 22 February 2011 earthquake. It was most likely left in commemoration of someone wh...

Images, UC QuakeStudies

A demon mask hangs from a brick chimney in New Brighton. Some of the bricks at the base of the chimney appear to have moved. The photographer comments, "Since the September earthquake brick chimneys have been tumbling down. I do not know if this was put up to ward off shaking of the chimney during earthquakes, but it seems to be working. This chimney has now been taken down at the end of March 2012 and replaced with a simple metal flue".

Images, UC QuakeStudies

A damaged brick building on Tuam Street. Bricks have fallen from the wall exposing the interior, where a wooden structure can be seen to have collapsed. The photographer comments, "This is the damage caused by the numerous earthquakes in Christchurch, New Zealand. It closely resembles a face and the round blob in the square hole at the top of the nose is a pigeon".

Videos, UC QuakeStudies

A video of a tour through the Christchurch central city Red Zone. The video includes footage of Armagh Street, Madras Street, Latimer Square, St John's Anglican Church, Hereford Street, the Octagon Live restaurant, the Design and Arts building, the High Street mall, and the Grand Chancellor Hotel. It also includes footage of construction workers cutting up metal beams, and clearing rubble from a building on Manchester Street.

Research papers, University of Canterbury Library

The majority of Christchurch’s stormwater has historically been discharged untreated directly into urban surface waterways. These receiving waterways have become adversely affected by the contaminants carried in the stormwater, particularly sediment and heavy metals. An event-based contaminant load model was developed to identify the distribution and magnitude of contaminant loads entering the waterway, as well as to assess the reduction in TSS and heavy metal loads that can be achieved by various stormwater management options. The GIS-Excel based model estimates contaminant loads from an individual storm event based on different contributing impervious surfaces and key rainfall characteristics (rainfall intensity, duration, pH and antecedent dry days). It then calculates contaminant reduction loads that could be achieved through source reduction (e.g. green roofs, repainting) as well as from treatment (e.g. raingardens, wet ponds) applied to different surfaces within the catchment. This model differs from other annual load models as it is event-based and accounts for storm characteristics in its calculation of contaminant loads. Christchurch is a valuable case setting due the unique opportunity for retrofitting improved stormwater management in the post-earthquake rebuild. It is anticipated that this modelling approach could later be adapted for use in other urban settings outside of Christchurch.

Audio, Radio New Zealand

A review of the week's news including... the former wife of a highly regarded Maori community leader who died in 2016 says she has passed on to Police the names of people she believes may have been involved in, or have knowledge of, what she's calling a paedophile sex ring involving her former husband, Peters on Trump, Wellington's new bus fleet hits the streets, more details of plans to cut jobs at the national museum, anti-gambling groups want poker machines included in a crackdown on money laundering, the worst winter for moteliers since the Canterbury earthquakes and who's to blame?, a statue on Bastion Point that could be as big as the Statue of Liberty and what happens when RNZ meets thrash metal?

Images, Alexander Turnbull Library

Text above the image reads 'Time capsules unearthed in Christchurch' A man reads a newspaper which says 'Petrol is so cheap you can actually afford to run one of these new-fangled motor cars...' Context - when a bronze statue of Christchurch founder John Robert Godley, which stood in Cathedral Square, toppled during the Christchurch earthquake of 22 February 2011, a crane driver clearing rubble discovered two time capsules. One is a small glass capsule with a hand-written letter on gold parchment inside, while the other is a large metal-like object, yet to be opened. A Nelson newspaper 'The Colonist' in an article published in 1918, about the time capsule in Christchurch said, "This statute of John Robert Godley executed by Thomas Woolner was erected in the west side of the Cathedral Square by the Provincial Government of Canterbury, and unveiled by the late Sir Charles Christopher Bowen on August 6 1867, it was moved to this site in March 1918." The man in the cartoon reads a bout the cost of petrol being incredibly cheap and thinks it refers to today's prices. Quantity: 1 digital cartoon(s).

Research papers, University of Canterbury Library

The Avon-Heathcote Estuary, located in Christchurch, New Zealand, experienced coseismic deformation as a result of the February 22nd 2011 Christchurch Earthquake. The deformation is reflected as subsidence in the northern area and uplift in the southern area of the Estuary, in addition to sand volcanoes which forced up sediment throughout the floor of the Estuary altering estuary bed height and tidal flow. The first part of the research involved quantifying the change in the modern benthic foraminifera distribution as a result of the coseismic deformation caused by the February 22nd 2011 earthquake. By analysing the taxa present immediately post deformation and then the taxa present 2 years post deformation a comparison of the benthic foraminifera distribution can be made of the pre and post deformation. Both the northern and the southern areas of the Estuary were sampled to establish whether foraminifera faunas migrated landward or seaward as a result of subsidence and uplift experienced in different areas. There was no statistical change in overall species distribution in the two year time period since the coseismic deformation occurred, however, there were some noticeable changes in foraminifera distribution at BSNS-Z3 showing a landward migration of taxa. The changes that were predicted to occur as a result of the deformation of the Estuary are taking longer than expected to show up in the foraminiferal record and a longer time period is needed to establish these changes. The second stage involved establishing the modern distribution of foraminifera at Settlers Reserve in the southern area of the Avon-Heathcote Estuary by detailed sampling along a 160 m transect. Foraminifera are sensitive to environmental parameters, tidal height, grainsize, pH and salinity were recorded to evaluate the effect these parameters have on distribution. Bray-Curtis two-way cluster analysis was primarily used to assess the distribution pattern of foraminifera. The modern foraminifera distribution is comparable to that of the modern day New Zealand brackish-water benthic foraminifera distribution and includes species not yet found in other studies of the Avon-Heathcote Estuary. Differences in sampling techniques and the restricted intertidal marshland area where the transect samples were collected account for some of the differences seen between this model and past foraminifera studies. xiii The final stage involved sampling a 2.20 m core collected from Settlers Reserve and using the modern foraminiferal distribution to establish a foraminiferal history of Settlers Reserve. As foraminifera are sensitive to tidal height they may record past coseismic deformation events and the core was used to ascertain whether record of past coseismic deformation is preserved in Settlers Reserve sediments. Sampling the core for foraminifera, grainsize, trace metals and carbon material helped to build a story of estuary development. Using the modern foraminiferal distribution and the tidal height information collected, a down core model of past tidal heights was established to determine past rates of change. Foraminifera are not well preserved throughout the core, however, a sudden relative rise in sea level is recorded between 0.25 m and 0.85 m. Using trace metal and isotope analysis to develop an age profile, this sea level rise is interpreted to record coseismic subsidence associated with a palaeoseismic event in the early 1900’s. Overall, although the Avon-Heathcote Estuary experienced clear coseismic deformation as a result of the 22nd of February 2011 earthquake, modern changes in foraminiferal distribution cannot yet be tracked, however, past seismic deformation is identified in a core. The modern transect describes the foraminifera distribution which identifies species that have not been identified in the Avon-Heathcote Estuary before. This thesis enhances the current knowledge of the Avon-Heathcote Estuary and is a baseline for future studies.

Research papers, University of Canterbury Library

To reduce seismic vulnerability and the economic impact of seismic structural damage, it is important to protect structures using supplemental energy dissipation devices. Several types of supplemental damping systems can limit loads transferred to structures and absorb significant response energy without sacrificial structural damage. Lead extrusion dampers are one type of supplemental energy dissipation devices. A smaller volumetric size with high force capacities, called high force to volume (HF2V) devices, have been employed in a large series of scaled and full-scaled experiments, as well as in three new structures in Christchurch and San Francisco. HF2V devices have previously been designed using very simple models with limited precision. They are then manufactured, and tested to ensure force capacities match design goals, potentially necessitating reassembly or redesign if there is large error. In particular, devices with a force capacity well above or below a design range can require more testing and redesign, leading to increased economic and time cost. Thus, there is a major need for a modelling methodology to accurately estimate the range of possible device force capacity values in the design phase – upper and lower bounds. Upper and lower bound force capacity estimates are developed from equations in the metal extrusion literature. These equations consider both friction and extrusion forces between the lead and the bulged shaft in HF2V devices. The equations for the lower and upper bounds are strictly functions of device design parameters ensuring easy use in the design phase. Two different sets of estimates are created, leading to estimates for the lower and upper bounds denoted FLB,1, FUB,1, FUB,2, respectively. The models are validated by comparing the bounds with experimental force capacity data from 15 experimental HF2V device tests. All lower bound estimates are below or almost equal to the experimental device forces, and all upper bound estimates are above. Per the derivation, the (FLB,1, FUB,1) pair provide narrower bounds. The (FLB,1, FUB,1) pair also had a mean lower bound gap of -34%, meaning the lower bound was 74% of device force on average, while the mean upper bound gap for FUB,1 was +23%. These are relatively tight bounds, within ~±2 SE of device manufacture, and can be used as a guide to ensure device forces are in range for the actual design use when manufactured. Therefore, they provide a useful design tool.