A document that outlines how timely and accurate information relating to estimating, actual project costs, future commitments, and total forecast cost, will be managed and reported for each project phase in the programme.
A plan which outlines how projects will be estimated to generate project Target Out-turn Costs (TOCs), and how these link into the programme TOC. The first version of this plan was produced on 29 July 2011.
A plan which aims to ensure the SCIRT programme complies with set specifications, design and industry quality standards. The first version of this plan was produced on 20 July 2011.
A plan which outlines how projects will be estimated to generate project Target Out-turn Costs (TOCs), and how these link into the programme TOC. The first version of this plan was produced on 29 July 2011.
A plan which outlines SCIRT's approach to Human Resource Management. The first version of this plan was produced on 30 August 2011.
An example of a checklist used by SCIRT traffic management teams to perform site checks.
An article published in the August/September 2015 issue of BRANZ Build magazine. It summarises SCIRT's approach to innovation management and suggests some areas for improvement.
A tool, in the form of a poster, given to workshop and toolbox participants and hung up at worksites and in offices, outlining five easy steps to minimise the impact of roadworks on businesses.
A story submitted by Tim Kerr to the QuakeStories website.
A research project which presents the traffic and transport planning that has been undertaken to achieve the overarching goal of rebuilding Christchurch, whilst keeping the traffic moving.
Following the 2010–2011 Canterbury earthquakes, a renewed focus has been directed across New Zealand to the hazard posed by the country‘s earthquake-vulnerable buildings, namely unreinforced masonry (URM) and reinforced concrete (RC) buildings with potentially nonductile components that have historically performed poorly in large earthquakes. The research reported herein was pursued with the intention of addressing several recommendations made by the Canterbury Earthquakes Royal Commission of Inquiry which were classified into the following general categories: Identification and provisional vulnerability assessment of URM and RC buildings and building components; Testing, assessment, and retrofitting of URM walls loaded out-of-plane, with a particular focus on highly vulnerable URM cavity walls; Testing and assessment of RC frame components, especially those with presumably non-ductile reinforcement detailing; Portfolio management considering risks, regulations, and potential costs for a portfolio that includes several potentially earthquake-vulnerable buildings; and Ongoing investigations and proposed research needs. While the findings from the reported research have implications for seismic assessments of buildings across New Zealand and elsewhere, an emphasis was placed on Auckland given this research program‘s partnership with the Auckland Council, the Auckland region accounting for about a third each of the country‘s population and economic production, and the number and variety of buildings within the Auckland building stock. An additional evaluation of a historic building stock was carried out for select buildings located in Hawke‘s Bay, and additional experimental testing was carried out for select buildings located in Hawke‘s Bay and Christchurch.
Predictive modelling provides an efficient means to analyse the coastal environment and generate knowledge for long term urban planning. In this study, the numerical models SWAN and XBeach were incorporated into the ESRI ArcGIS interface by means of the BeachMMtool. This was applied to the Greater Christchurch coastal environment to simulate geomorphological evolution through hydrodynamic forcing. Simulations were performed using the recent sea level rise predictions by the Intergovernmental Panel on Climate Change (2013) to determine whether the statutory requirements outlined in the New Zealand Coastal Policy Statement 2010 are consistent with central, regional and district designations. Our results indicate that current land use zoning in Greater
Christchurch is not consistent with these predictions. This is because coastal hazard risk has not been thoroughly quantified during the process of installing the Canterbury Earthquake Recovery Authority residential red zone. However, the Christchurch City Council’s flood management area does provide an extent to which managed coastal retreat is a real option. The results of this research suggest that progradation will continue to occur along the Christchurch foreshore due to the net sediment flux retaining an onshore direction and the current hydrodynamic activity not being strong enough to move sediment offshore. However, inundation during periods of storm surge poses a risk to human habitation on low lying areas around the Avon-Heathcote Estuary and the Brooklands lagoon.