Search

found 18 results

Audio, Radio New Zealand

Base isolation has generally been considered an expensive system used mainly in commercial buildings to make them more earthquake resilient. Katy Gosset meets the University of Canterbury engineers who've developed a safe, low cost model that could work in our homes.

Images, UC QuakeStudies

A photograph submitted by Jo Reid to the QuakeStories website. The description reads, "An office in the process of demolition. They stripped the building and then carefully deconstructed it to make sure the buildings around were safe.".

Images, UC QuakeStudies

The Williams Street Bridge in Kaiapoi. This part of the footpath was damaged when the concrete abutment rose during the earthquake, forcing its way through the pavement and into the open. Fencing has been placed around this section of the bridge until work can be done to make it safe to walk on.

Images, UC QuakeStudies

In front of the Williams Street Bridge in Kaiapoi. This part of the footpath was damaged when the concrete abutment rose during the earthquake, forcing its way through the pavement and into the open. Fencing has been placed around this section of the bridge until work can be done to make it safe to walk on.

Images, Canterbury Museum

One landscape colour digital photograph taken on 6 September 2010 showing earthquake damage to buildings on Victoria Street near Bealey Avenue. The red brick building is the Knox Church; it still stands on the corner of Bealey Avenue and Victoria Street following the earthquake, though some extreme measures were taken to make it safe. The red b...

Images, UC QuakeStudies

Damage to TJ's Kazbah in New Brighton. The east and north walls and part of the upper floor have collapsed, tipping rubble and the contents of the rooms out onto the street. The photographer comments, "The occupants of the business and rooms all managed to escape alive. A digger was used to make the building safe and then used to sift through the rubble for any surviving belongings. It was a very emotional time for the ex-occupants".

Images, UC QuakeStudies

Damage to TJ's Kazbah in New Brighton. The east and north walls and part of the upper floor have collapsed, tipping rubble and the contents of the rooms out onto the street. The photographer comments, "The occupants of the business and rooms all managed to escape alive. A digger was used to make the building safe and then used to sift through the rubble for any surviving belongings. It was a very emotional time for the ex-occupants".

Images, UC QuakeStudies

Damage to TJ's Kazbah in New Brighton. The tower and east end of the building have collapsed onto two parked cars. The photographer comments, "The occupants of the business and rooms all managed to escape alive. A digger was used to make the building safe and then used to sift through the rubble for any surviving belongings. It was a very emotional time for the ex-occupants. The damaged cars were removed before the digger demolished the building".

Research papers, University of Canterbury Library

New Zealand has a long tradition of using light timber frame for construction of its domestic dwellings. After the most recent earthquakes (e.g. Canterbury earthquakes sequence), wooden residential houses showed satisfactory life safety performance which aligns with New Zealand design codes requirements. However, poor performance was reported in terms of their seismic resilience that can be generally associated with community demands. Future expectations of the seismic performance of wooden-framed houses by homeowners were assessed in this research. Homeowners in the Wellington region were asked in a survey about the levels of safety and expected possible damage in their houses after a seismic event. Findings bring questions about whether New Zealand code requirements are good enough to satisfy community demands. Also, questions whether available information of strengthening techniques to structurally prepare wooden-framed houses to face future major earthquakes can help to make homeowners feel safer at home during major seismic events.

Research papers, Lincoln University

The Building Act 2004 now requires Territorial Authorities (TAs) to have in place a policy setting out how they intend making existing buildings that would be unable to withstand a moderate earthquake safe for their occupiers. Many of the resultant policies developed by TAs have put in place mandatory upgrade requirements that will force owners to expend large amounts of capital on seismic upgrading of their buildings. The challenge for the property owners and TAs alike is to make such development work economic or the result will be wide scale demolition of old buildings. This has serious implications for both heritage conservation and inner city revitalisation plans that are based on existing heritage buildings. This paper sets out the issues and challenges for the seismic upgrading of buildings in New Zealand and puts forward some potential solutions

Audio, Radio New Zealand

A review of the week's news including... A tsunami warning after a severe 7.1 earthquake north of East Cape, Havelock North's residents finally get the chance to grill their local leaders, the Environment Minister says people who insist that every lake and river should be safe to swim in are being unrealistic, Kim Dotcom wins his bid to live stream his High Court appeal against his extradition, New Zealanders who've been living in Australia for up to ten years say they're reaching breaking point, legal action over faulty steel mesh triggers doubts about some house insurance, a prominent Maori leader is found guilty of defrauding his fellow trustees in the Wellington Tenths Trust, a South Canterbury farming official says stealing 500 cows is like stealing the Crown jewels - complicated but not impossible, Auckland mayoral candidate Vic Crone pledges to bring forward the cross-harbour tunnel project by a decade or more after saying she'd make no commitments on it, while another candidate, Phil Goff wants to introduce a living wage for all council staff, the transgender community wants the waiting times for sex change operations cut, a sit down chat with Olympic pole vaulting bronze medalist Eliza McCartney and the real story behind the 2nd Bledisloe Cup test in Wellington from a former Wallaby.

Research papers, The University of Auckland Library

The supply of water following disasters has always been of significant concern to communities. Failure of water systems not only causes difficulties for residents and critical users but may also affect other hard and soft infrastructure and services. The dependency of communities and other infrastructure on the availability of safe and reliable water places even more emphasis on the resilience of water supply systems. This thesis makes two major contributions. First, it proposes a framework for measuring the multifaceted resilience of water systems, focusing on the significance of the characteristics of different communities for the resilience of water supply systems. The proposed framework, known as the CARE framework, consists of eight principal activities: (1) developing a conceptual framework; (2) selecting appropriate indicators; (3) refining the indicators based on data availability; (4) correlation analysis; (5) scaling the indicators; (6) weighting the variables; (7) measuring the indicators; and (8) aggregating the indicators. This framework allows researchers to develop appropriate indicators in each dimension of resilience (i.e., technical, organisational, social, and economic), and enables decision makers to more easily participate in the process and follow the procedure for composite indicator development. Second, it identifies the significant technical, social, organisational and economic factors, and the relevant indicators for measuring these factors. The factors and indicators were gathered through a comprehensive literature review. They were then verified and ranked through a series of interviews with water supply and resilience specialists, social scientists and economists. Vulnerability, redundancy and criticality were identified as the most significant technical factors affecting water supply system robustness, and consequently resilience. These factors were tested for a scenario earthquake of Mw 7.6 in Pukerua Bay in New Zealand. Four social factors and seven indicators were identified in this study. The social factors are individual demands and capacities, individual involvement in the community, violence level in the community, and trust. The indicators are the Giving Index, homicide rate, assault rate, inverse trust in army, inverse trust in police, mean years of school, and perception of crime. These indicators were tested in Chile and New Zealand, which experienced earthquakes in 2010 and 2011 respectively. The social factors were also tested in Vanuatu following TC Pam, which hit the country in March 2015. Interestingly, the organisational dimension contributed the largest number of factors and indicators for measuring water supply resilience to disasters. The study identified six organisational factors and 17 indicators that can affect water supply resilience to disasters. The factors are: disaster precaution; predisaster planning; data availability, data accessibility and information sharing; staff, parts, and equipment availability; pre-disaster maintenance; and governance. The identified factors and their indicators were tested for the case of Christchurch, New Zealand, to understand how organisational capacity affected water supply resilience following the earthquake in February 2011. Governance and availability of critical staff following the earthquake were the strongest organisational factors for the Christchurch City Council, while the lack of early warning systems and emergency response planning were identified as areas that needed to be addressed. Economic capacity and quick access to finance were found to be the main economic factors influencing the resilience of water systems. Quick access to finance is most important in the early stages following a disaster for response and restoration, but its importance declines over time. In contrast, the economic capacity of the disaster struck area and the water sector play a vital role in the subsequent reconstruction phase rather than in the response and restoration period. Indicators for these factors were tested for the case of the February 2011 earthquake in Christchurch, New Zealand. Finally, a new approach to measuring water supply resilience is proposed. This approach measures the resilience of the water supply system based on actual water demand following an earthquake. The demand-based method calculates resilience based on the difference between water demand and system capacity by measuring actual water shortage (i.e., the difference between water availability and demand) following an earthquake.