Search

found 3 results

Research Papers, Lincoln University

Orientation: Large-scale events such as disasters, wars and pandemics disrupt the economy by diverging resource allocation, which could alter employment growth within the economy during recovery. Research purpose: The literature on the disaster–economic nexus predominantly considers the aggregate performance of the economy, including the stimulus injection. This research assesses the employment transition following a disaster by removing this stimulus injection and evaluating the economy’s performance during recovery. Motivation for the study: The underlying economy’s performance without the stimulus’ benefit remains primarily unanswered. A single disaster event is used to assess the employment transition to guide future stimulus response for disasters. Research approach/design and method: Canterbury, New Zealand, was affected by a series of earthquakes in 2010–2011 and is used as a single case study. Applying the historical construction–economic relationship, a counterfactual level of economic activity is quantified and compared with official results. Using an input–output model to remove the economy-wide impact from the elevated activity reveals the performance of the underlying economy and employment transition during recovery. Main findings: The results indicate a return to a demand-driven level of building activity 10 years after the disaster. Employment transition is characterised by two distinct periods. The first 5 years are stimulus-driven, while the 5 years that follow are demand-driven from the underlying economy. After the initial period of elevated building activity, construction repositioned to its long-term level near 5% of value add. Practical/managerial implications: The level of building activity could be used to confidently assess the performance of regional economies following a destructive disaster. The study results argue for an incentive to redevelop the affected area as quickly as possible to mitigate the negative effect of the destruction and provide a stimulus for the economy. Contribution/value-add: This study contributes to a growing stream of regional disaster economics research that assesses the economic effect using a single case study.

Research Papers, Lincoln University

We examined the stratigraphy of alluvial fans formed at the steep range front of the Southern Alps at Te Taho, on the north bank of the Whataroa River in central West Coast, South Island, New Zealand. The range front coincides with the Alpine Fault, an Australian-Pacific plate boundary fault, which produces regular earthquakes. Our study of range front fans revealed aggradation at 100- to 300-year intervals. Radiocarbon ages and soil residence times (SRTs) estimated by a quantitative profile development index allowed us to elucidate the characteristics of four episodes of aggradation since 1000 CE. We postulate a repeating mode of fan behaviour (fan response cycle [FRC]) linked to earthquake cycles via earthquake-triggered landslides. FRCs are characterised by short response time (aggradation followed by incision) and a long phase when channels are entrenched and fan surfaces are stable (persistence time). Currently, the Te Taho and Whataroa River fans are in the latter phase. The four episodes of fan building we determined from an OxCal sequence model correlate to Alpine Fault earthquakes (or other subsidiary events) and support prior landscape evolution studies indicating ≥M7.5 earthquakes as the main driver of episodic sedimentation. Our findings are consistent with other historic non-earthquake events on the West Coast but indicate faster responses than other earthquake sites in New Zealand and elsewhere where rainfall and stream gradients (the basis for stream power) are lower. Judging from the thickness of fan deposits and the short response times, we conclude that pastoral farming (current land-use) on the fans and probably across much of the Whataroa River fan would be impossible for several decades after a major earthquake. The sustainability of regional tourism and agriculture is at risk, more so because of the vulnerability of the single through road in the region (State Highway 6).

Research papers, University of Canterbury Library

The research is funded by Callaghan Innovation (grant number MAIN1901/PROP-69059-FELLOW-MAIN) and the Ministry of Transport New Zealand in partnership with Mainfreight Limited. Need – The freight industry is facing challenges related to climate change, including natural hazards and carbon emissions. These challenges impact the efficiency of freight networks, increase costs, and negatively affect delivery times. To address these challenges, freight logistics modelling should consider multiple variables, such as natural hazards, sustainability, and emission reduction strategies. Freight operations are complex, involving various factors that contribute to randomness, such as the volume of freight being transported, the location of customers, and truck routes. Conventional methods have limitations in simulating a large number of variables. Hence, there is a need to develop a method that can incorporate multiple variables and support freight sustainable development. Method - A minimal viable model (MVM) method was proposed to elicit tacit information from industrial clients for building a minimally sufficient simulation model at the early modelling stages. The discrete-event simulation (DES) method was applied using Arena® software to create simulation models for the Auckland and Christchurch corridor, including regional pick-up and delivery (PUD) models, Christchurch city delivery models, and linehaul models. Stochastic variables in freight operations such as consignment attributes, customer locations, and truck routes were incorporated in the simulation. The geographic information system (GIS) software ArcGIS Pro® was used to identify and analyse industrial data. The results obtained from the GIS software were applied to create DES models. Life cycle assessment (LCA) models were developed for both diesel and battery electric (BE) trucks to compare their life cycle greenhouse gas (GHG) emissions and total cost of ownership (TCO) and support GHG emissions reduction. The line-haul model also included natural hazards in several scenarios, and the simulation was used to forecast the stock level of Auckland and Christchurch depots in response to each corresponding scenario. Results – DES is a powerful technique that can be employed to simulate and evaluate freight operations that exhibit high levels of variability, such as regional pickup and delivery (PUD) and linehaul. Through DES, it becomes possible to analyse multiple factors within freight operations, including transportation modes, routes, scheduling, and processing times, thereby offering valuable insights into the performance, efficiency, and reliability of the system. In addition, GIS is a useful tool for analysing and visualizing spatial data in freight operations. This is exemplified by their ability to simulate the travelling salesman problem (TSP) and conduct cluster analysis. Consequently, the integration of GIS into DES modelling is essential for improving the accuracy and reliability of freight operations analysis. The outcomes of the simulation were utilised to evaluate the ecological impact of freight transport by performing emission calculations and generating low-carbon scenarios to identify approaches for reducing the carbon footprint. LCA models were developed based on simulation results. Results showed that battery-electric trucks (BE) produced more greenhouse gas (GHG) emissions in the cradle phase due to battery manufacturing but substantially less GHG emissions in the use phase because of New Zealand's mostly renewable energy sources. While the transition to BE could significantly reduce emissions, the financial aspect is not compelling, as the total cost of ownership (TCO) for the BE truck was about the same for ten years, despite a higher capital investment for the BE. Moreover, external incentives are necessary to justify a shift to BE trucks. By using simulation methods, the effectiveness of response plans for natural hazards can be evaluated, and the system's vulnerabilities can be identified and mitigated to minimize the risk of disruption. Simulation models can also be utilized to simulate adaptation plans to enhance the system's resilience to natural disasters. Novel contributions – The study employed a combination of DES and GIS methods to incorporate a large number of stochastic variables and driver’s decisions into freight logistics modelling. Various realistic operational scenarios were simulated, including customer clustering and PUD truck allocation. This showed that complex pickup and delivery routes with high daily variability can be represented using a model of roads and intersections. Geographic regions of high customer density, along with high daily variability could be represented by a two-tier architecture. The method could also identify delivery runs for a whole city, which has potential usefulness in market expansion to new territories. In addition, a model was developed to address carbon emissions and total cost of ownership of battery electric trucks. This showed that the transition was not straightforward because the economics were not compelling, and that policy interventions – a variety were suggested - could be necessary to encourage the transition to decarbonised freight transport. A model was developed to represent the effect of natural disasters – such as earthquake and climate change – on road travel and detour times in the line haul freight context for New Zealand. From this it was possible to predict the effects on stock levels for a variety of disruption scenarios (ferry interruption, road detours). Results indicated that some centres rather than others may face higher pressure and longer-term disturbance after the disaster subsided. Remedies including coastal shipping were modelled and shown to have the potential to limit the adverse effects. A philosophical contribution was the development of a methodology to adapt the agile method into the modelling process. This has the potential to improve the clarification of client objectives and the validity of the resulting model.