Search

found 5 results

Research papers, University of Canterbury Library

This poster presents preliminary results of ongoing experimental campaigns at the Universities of Auckland and Canterbury, aiming at investigating the seismic residual capacity of damaged reinforced concrete plastic hinges, as well as the effectiveness of epoxy injection techniques for restoring their stiffness, energy dissipation, and deformation capacity characteristics. This work is part of wider research project which started in 2012 at the University of Canterbury entitled “Residual Capacity and Repairing Options for Reinforced Concrete Buildings”, funded by the Natural Hazards Research Platform (NHRP). This research project aims at gaining a better understanding and providing the main end-users and stakeholders (practitioner engineers, owners, local and government authorities, insurers, and regulatory agencies) with comprehensive evidence-based information and practical guidelines to assess the residual capacity of damaged reinforced concrete buildings, as well as to evaluate the feasibility of repairing and thus support their delicate decision-making process of repair vs. demolition or replacement.

Videos, UC QuakeStudies

A video of a presentation by Dr Sarah Beaven during the Social Recovery Stream of the 2016 People in Disasters Conference. The presentation is titled, "Leading and Coordinating Social Recovery: Lessons from a central recovery agency".The abstract for this presentation reads as follows: This presentation provides an overview of the Canterbury Earthquake Recovery Authority's Social Recovery Lessons and Legacy project. This project was commissioned in 2014 and completed in December 2015. It had three main aims: to capture Canterbury Earthquake Recovery Authority's role in social recovery after the Canterbury earthquakes, to identify lessons learned, and to disseminate these lessons to future recovery practitioners. The project scope spanned four Canterbury Earthquake Recovery Authority work programmes: The Residential Red Zone, the Social and Cultural Outcomes, the Housing Programme, and the Community Resilience Programme. Participants included both Canterbury Earthquake Recovery Authority employees, people from within a range of regional and national agencies, and community and public sector organisations who worked with Canterbury Earthquake Recovery Authority over time. The presentation will outline the origin and design of the project, and present some key findings.

Videos, UC QuakeStudies

A video of a presentation by Jane Morgan and Annabel Begg during the Social Recovery Stream of the 2016 People in Disasters Conference. The presentation is titled, "Monitoring Social Recovery in Greater Christchurch".The abstract for this presentation reads as follows: This presentation provides an overview of the Canterbury Earthquake Recovery Authority's Social Recovery Lessons and Legacy project. This project was commissioned in 2014 and completed in December 2015. It had three main aims: to capture Canterbury Earthquake Recovery Authority's role in social recovery after the Canterbury earthquakes, to identify lessons learned, and to disseminate these lessons to future recovery practitioners. The project scope spanned four Canterbury Earthquake Recovery Authority work programmes: The Residential Red Zone, the Social and Cultural Outcomes, the Housing Programme, and the Community Resilience Programme. Participants included both Canterbury Earthquake Recovery Authority employees, people from within a range of regional and national agencies, and community and public sector organisations who worked with Canterbury Earthquake Recovery Authority over time. The presentation will outline the origin and design of the project, and present some key findings.

Research papers, The University of Auckland Library

Eccentrically Braced Frames (EBFs) are a widely used seismic resisting structural steel system. Since their inception in the late 1970s, they have been a viable option with an available stiffness that is between simple braced systems and moment resisting systems. A similar concept, the linked column frame (LCF), uses shear links between two closely spaced columns. In both cases, the key component is the active link or the shear link, and this component is the objective of this study. The performance of high rise EBF buildings in the 2010 and 2011 Christchurch earthquakes was beyond that which was expected, especially considering the very high accelerations recorded. As the concrete high-rises were torn down, two EBF buildings remained standing and only required some structural repair. These events prompted a renewed interest in bolted shear links, as well as their performance. While some research into replaceable shear links had already been done (Mansour, 2011), the objectives of this study were to improve on the shear link itself, with the consideration that links built in the future are likely to be bolted. The main components of this study were to: 1. Reduce or eliminate the requirements for intermediate web stiffeners, as they were suspected of being detrimental to performance. Furthermore, any reduction in stiffening requirements is a direct fabrication cost saving. Links with low web aspect ratios were found to achieve exceptional ductilities when no stiffeners were included, prompting new design equations. 2. Ensure that the stresses in the ends of links are adequately transferred into the endplates without causing fractures. Although most of the experimental links had web doubler plates included, four had varied lengths of such doubler plates from 0.0 in. to 8.0 in. The link without any doubler plates performed to a similar level to its peers, and thus it is likely that links with quality end details may not need web doubler plates at all. 3. Evaluate the performance of a link with double sided stiffeners without the use of web welds, as opposed to conventional single sided, welded stiffeners. This link performed well, and web-weld-less double sided stiffeners may be an economical alternative to conventional stiffeners for deeper sections of links. 4. Evaluate the performance of a link with thin endplates that are made efficient with the use of gusset plates. This link performed to an acceptable level and provides evidence for a cost effective alternative to thick endplates, especially considering the high overstrength end moments in links, typically requiring 16-bolt connections. 5. Examine the potential use of an alternative EBF arrangement where the collector beam is over sized, and the link section is formed by cutting out parts of the beam's web. After running a series of finite element models each with a unique variation, a number of approximate design rules were derived such that future research could develop this idea further experimentally. 6. Ensure that during testing, the secondary elements (members that are not the shear link), do not yield and are not close to yielding. None of the instrumented elements experienced any unexpected yielding, however the concerns for high stresses in the collector beam panel zone during design were warranted. The use of an existing New Zealand design equation is recommended as an extra check for design codes worldwide. The above objectives were mainly conducted experimentally, except: the data set for item 1 was greatly expanded through the use of a calibrated numerical model which was then used in an extensive parametric study; item 5 was purely finite element based; and, a small parametric study was included for item 3 in an attempt to expand on the trends found there.