Ruth Gardner's Blog 22/03/2012: Lamenting the Loss
Articles, UC QuakeStudies
An entry from Ruth Gardner's blog for 22 March 2012 entitled, "Lamenting the Loss".
An entry from Ruth Gardner's blog for 22 March 2012 entitled, "Lamenting the Loss".
A preliminary case study assessing the seismic sustainability of two reinforced concrete structures, a frame structure and a wall structure, was conducted to determine which structural system is more seismically sustainable. The two structures were designed to the same standards and were assumed to be located in Christchurch, New Zealand. A component-based probabilistic seismic loss assessment, considering direct losses only, was conducted for two ground motion records, regarded to approximately represent a 1 in 500 year earthquake event and a 1 in 2500 year earthquake event, respectively. It is shown that the wall structure results in lower direct losses than the frame structure in the less severe ground motion scenario. However, in the more severe ground motion scenario, the frame structure results in lower direct losses. Hence, this study demonstrates that which structural system has the lower direct losses depends on the ground motion intensity level.
An entry from Ruth Gardner's blog for 8 March 2012 entitled, "Wet Weather Woes".
An entry from Ruth Gardner's blog for 22 February 2012 entitled, "Loss of Lives, Livelihood and Living".
An entry from Ruth Gardner's blog for 28 May 2012 entitled, "Perilous Palms?".
An entry from Ruth Gardner's blog for 23 March 2012 entitled, "Seeing Red".
The University of Canterbury has initialized a research program focusing on the seismic sustainability of structures. As part of this program, the relative seismic sustainability of various structures will be assessed to identify those with the highest sustainability for the Christchurch rebuild and general use in New Zealand. This preliminary case study assesses one reinforced concrete (RC) frame structure and one RC wall structure. The scenario loss is evaluated for two earthquake records considering direct losses only in order to explain and illustrate the methodology.
The "Lyttelton Review" newsletter for 27 February 2012, produced by the Lyttelton Harbour Information Centre.
A pdf transcript of Belle's earthquake story, captured by the UC QuakeBox project.
The "Lyttelton Review" newsletter for 18 June 2012, produced by the Lyttelton Harbour Information Centre.
The "Lyttelton Review" newsletter for 6 August 2012, produced by the Lyttelton Harbour Information Centre.
The "Lyttelton Review" newsletter for 9 July 2012, produced by the Lyttelton Harbour Information Centre.
The "Lyttelton Review" newsletter for 13 August 2012, produced by the Lyttelton Harbour Information Centre.
A video of an interview with Peter Cammock and Cathy Allen about growing up on River Road and their feelings of loss and sadness that it is now part of the residential red zone.
Summary of oral history interview with Jenny May about her experiences of the Canterbury earthquakes.
Earthquake events can be sudden, stressful, unpredictable, and uncontrollable events in which an individual’s internal and external assumptions of their environment may be disrupted. A number of studies have found depression, and other psychological symptoms may be common after natural disasters. They have also found an association between depression, losses and disruptions for survivors. The present study compared depression symptoms in two demographically matched communities differentially affected by the Canterbury (New Zealand) earthquakes. Hypotheses were informed by the theory of learned helplessness (Abramson, Seligman & Teasdale, 1978). A door-to-door survey was conducted in a more physically affected community sample (N=67) and a relatively unaffected community sample (N=67), 4 months after the February 2011 earthquake. Participants were again assessed approximately 10 months after the quake. Measures of depression, acute stress, anxiety, aftershock anxiety, losses, physical disruptions and psychological disruptions were taken. In addition, prior psychological symptoms, medication, alcohol and cigarette use were assessed. Participants in the more affected community reported higher depression scores than the less affected community. Overall, elevated depressive score at time 2 were predicted by depression at time 1, acute stress and anxiety symptoms at time 2, physical disruptions following the quake and psychosocial functioning disruptions at time 2. These results suggest the influence of acute stress, anxiety and disruptions in predicting depression sometime after an earthquake. Supportive interventions directed towards depression, and other psychological symptoms, may prove helpful in psychological adjustment following ongoing disruptive stressors and uncontrollable seismic activity.
The Canterbury earthquakes are unique in that the there have been a series of major earthquakes, each with their own subsequent aftershock pattern. These have extended from the first large earthquake in September 2010 to currently, at the time of writing, two years later. The last significant earthquake of over magnitude 5.0 on the Richter scale was in May on 2012, and the total number of aftershocks has exceeded 12,000. The consequences, in addition to the loss of life, significant injury and widespread damage, have been far reaching and long term, with detrimental effects and still uncertain effects for many. This provides unique challenges for individuals, communities, organisations and institutions within Canterbury. This document reviews research-based understandings of the concept of resilience. A conceptual model is developed which identifies a number of the factors that influence individual and household resilience. Guided by the model, a series of recommendations are developed for practices that will support individual and household resilience in Canterbury in the aftermath of the 2010-2011 earthquakes.
The 22nd February 2011, Mw 6.3 Christchurch earthquake in New Zealand caused major damage to critical infrastructure, including the healthcare system. The Natural Hazard Platform of NZ funded a short-term project called “Hospital Functions and Services” to support the Canterbury District Health Board’s (CDHB) efforts in capturing standardized data that describe the effects of the earthquake on the Canterbury region’s main hospital system. The project utilised a survey tool originally developed by researchers at Johns Hopkins University (JHU) to assess the loss of function of hospitals in the Maule and Bío-Bío regions following the 27th February 2010, Mw 8.8 Maule earthquake in Chile. This paper describes the application of the JHU tool for surveying the impact of Christchurch earthquake on the CDHB Hospital System, including the system’s residual capacity to deliver emergency response and health care. A short summary of the impact of the Christchurch earthquake on other CDHB public and private hospitals is also provided. This study demonstrates that, as was observed in other earthquakes around the world, the effects of damage to non-structural building components, equipment, utility lifelines, and transportation were far more disruptive than the minor structural damage observed in buildings (FEMA 2007). Earthquake related complications with re-supply and other organizational aspects also impacted the emergency response and the healthcare facilities’ residual capacity to deliver services in the short and long terms.
Since September 2010 Christchurch, New Zealand, has experienced a number of significant earthquakes. In addition to loss of life, this has resulted in significant destruction to infrastructure, including road corridors; and buildings, especially in the central city, where it has been estimated that 60% of buildings will need to be rebuilt. The rebuild and renewal of Christchurch has initially focused on the central city under the direction of the Christchurch City Council. This has seen the development of a draft Central City Plan that includes a number of initiatives that should encourage the use of the bicycle as a mode of transport. The rebuild and renewal of the remainder of the city is under the jurisdiction of a specially set up authority, the Christchurch Earthquake Recovery Authority (CERA). CERA reports to an appointed Minister for Canterbury Earthquake Recovery, who is responsible for coordinating the planning, spending, and actual rebuilding work needed for the recovery. Their plans for the renewal and rebuild of the remainder of the city are not yet known. This presentation will examine the potential role of the bicycle as a mode of transport in a rebuilt Christchurch. The presentation will start by describing the nature of damage to Christchurch as a result of the 2010 and 2011 earthquakes. It will then review the Central City Plan (the plan for the rebuild and renewal for central Christchurch) focusing particularly on those aspects that affect the role of the bicycle. The potential for the success of this plan will be assessed. It will specifically reflect on this in light of some recent research in Christchurch that examined the importance of getting infrastructure right if an aim of transport planning is to attract new people to cycle for utilitarian reasons.
Earthquake Engineering is facing an extraordinarily challenging era, the ultimate target being set at increasingly higher levels by the demanding expectations of our modern society. The renewed challenge is to be able to provide low-cost, thus more widely affordable, high-seismic-performance structures capable of sustaining a design level earthquake with limited or negligible damage, minimum disruption of business (downtime) or, in more general terms, controllable socio-economical losses. The Canterbury earthquakes sequence in 2010-2011 has represented a tough reality check, confirming the current mismatch between societal expectations over the reality of seismic performance of modern buildings. In general, albeit with some unfortunate exceptions, modern multi-storey buildings performed as expected from a technical point of view, in particular when considering the intensity of the shaking (higher than new code design) they were subjected to. As per capacity design principles, plastic hinges formed in discrete regions, allowing the buildings to sway and stand and people to evacuate. Nevertheless, in many cases, these buildings were deemed too expensive to be repaired and were consequently demolished. Targeting life-safety is arguably not enough for our modern society, at least when dealing with new building construction. A paradigm shift towards damage-control design philosophy and technologies is urgently required. This paper and the associated presentation will discuss motivations, issues and, more importantly, cost-effective engineering solutions to design buildings capable of sustaining low-level of damage and thus limited business interruption after a design level earthquake. Focus will be given to the extensive research and developments in jointed ductile connections based upon controlled rocking & dissipating mechanisms for either reinforced concrete and, more recently, laminated timber structures. An overview of recent on-site applications of such systems, featuring some of the latest technical solutions developed in the laboratory and including proposals for the rebuild of Christchurch, will be provided as successful examples of practical implementation of performance-based seismic design theory and technology.
Hon DAVID PARKER to the Minister of Finance: Does he stand by his answer on Tuesday regarding jobs "I think that the number of 170,000 may come from the initial Budget forecast for 2009, perhaps. I cannot remember the year exactly."? Dr KENNEDY GRAHAM to the Minister for Climate Change Issues: Given the recent loss of Māori Party support for his Climate Change Response (Emissions Trading and Other Matters) Amendment Bill, will he consider working with opposition parties on amendments to improve it? LOUISE UPSTON to the Minister of Finance: How is the Government's infrastructure programme contributing to building a more competitive economy? Hon DAVID CUNLIFFE to the Minister for Economic Development: Does he agree with the NZIER shadow board that "the growth outlook for the second half of 2012 looks weak and unemployment remains stubbornly high."? IAN McKELVIE to the Minister for Social Development: What announcements has she made to review Child Youth and Family's complaints process? Hon MARYAN STREET to the Minister of Health: What progress has been made in the delivery of the Prime Minister's Youth Mental Health Project announced in April of this year with an extra $11.3 million provided to support it? JACQUI DEAN to the Minister for the Environment: What reports has she received on the time taken for decisions on notified consents issued under the Resource Management Act 1991? GARETH HUGHES to the Minister of Foreign Affairs: Why did New Zealand pull out of a joint proposal with the United States to create a marine reserve in Antarctica's Ross Sea? Rt Hon WINSTON PETERS to the Prime Minister: Does he stand by the answers he gave yesterday to supplementary question 5 on Oral Question No 7 and supplementary question 3 on Oral Question No 12? NICKY WAGNER to the Minister for Canterbury Earthquake Recovery: What progress has the Government made to support repairing damaged houses and infrastructure following the Canterbury earthquakes? SUE MORONEY to the Prime Minister: Does he stand by his statement on 3News last night, on the subject of Business New Zealand's assertion that women need retraining when returning to employment after extended parental leave that "no. It wouldn't be my view"? JAMI-LEE ROSS to the Minister of Immigration: What is the Government doing to ensure that New Zealanders have first priority for jobs in the Canterbury rebuild?
The Avon and Heathcote Rivers, located in the city of Christchurch, New Zealand, are lowland spring-fed rivers linked with the Christchurch Groundwater System. At present, the flow paths and recharge sources to the Christchurch Groundwater System are not fully understood. Study of both the Avon and Heathcote Rivers can provide greater insight into this system. In addition, during the period 2010-2012, Christchurch has experienced large amounts of seismic activity, including a devastating Mw 6.2 aftershock on February 22nd, 2011, which caused widespread damage and loss of life. Associated with these earthquakes was the release of large amounts of water through liquefaction and temporary springs throughout the city. This provided a unique opportunity to study groundwater surface water interactions following a large scale seismic event. Presented herein is the first major geochemical study on the Avon and Heathcote Rivers and the hydrological impact of the February 22, 2011 Christchurch Earthquake. The Avon, Heathcote, and Waimakariri Rivers were sampled in quarterly periods starting in July 2011 and analyzed for stable Isotopes δ¹⁸O, δD, and δ¹³C and major anion composition. In addition, post -earthquake samples were collected over the days immediately following the February 22, 2011 earthquake and analyzed for stable isotopes δ¹⁸O and δD and major anion composition. A variety of analytical methods were used identify the source of the waters in the Avon-Heathcote System and evaluate the effectiveness of stable isotopes as geochemical tracers in the Christchurch Groundwater System. The results of this thesis found that the waters from the Avon and Heathcote Rivers are geochemically the same, originating from groundwater, and exhibit a strong tidal influence within 5km of the Avon-Heathcote Estuary. The surface waters released following the February 22nd, 2011 earthquake were indistinguishable from quarterly samples taken from the Avon and Heathcote Rivers when comparing stable isotopic composition. The anion data suggests the waters released following the February 22nd, 2011 Christchurch Earthquake were sourced primarily from shallow groundwater, and also suggests a presence of urban sewage at some sites. Attempts to estimate recharge sources for the Avon-Heathcote Rivers using published models for the Christchurch Groundwater System yielded results that were not consistent between models. In evaluating the use of geochemical constituents as tracers in the Christchurch Groundwater System, no one isotope could provide a clear resolution, but when used in conjunction, δ¹⁸O, δ¹³C, and DIC, seem to be the most effective tracers. Sample sizes for δ¹³C were too small for a robust evaluation. Variability on the Waimakariri River appears to be greater than previously estimated, which could have significant impacts on geochemical models for the Christchurch Groundwater System. This research demonstrates the value of using multiple geochemical constituents to enrich our understanding of the groundwater surfaces-water interactions and the Christchurch Groundwater System as a whole.
In the period between September 2010 and December 2011, Christchurch (New Zealand) and its surroundings were hit by a series of strong earthquakes including six significant events, all generated by local faults in proximity to the city: 4 September 2010 (Mw=7.1), 22 February 2011 (Mw=6.2), 13 June 2011 (Mw=5.3 and Mw=6.0) and 23 December 2011 (M=5.8 and (M=5.9) earthquakes. As shown in Figure 1, the causative faults of the earthquakes were very close to or within the city boundaries thus generating very strong ground motions and causing tremendous damage throughout the city. Christchurch is shown as a lighter colour area, and its Central Business District (CBD) is marked with a white square area in the figure. Note that the sequence of earthquakes started to the west of the city and then propagated to the south, south-east and east of the city through a set of separate but apparently interacting faults. Because of their strength and proximity to the city, the earthquakes caused tremendous physical damage and impacts on the people, natural and built environments of Christchurch. The 22 February 2011 earthquake was particularly devastating. The ground motions generated by this earthquake were intense and in many parts of Christchurch substantially above the ground motions used to design the buildings in Christchurch. The earthquake caused 182 fatalities, collapse of two multi-storey reinforced concrete buildings, collapse or partial collapse of many unreinforced masonry structures including the historic Christchurch Cathedral. The Central Business District (CBD) of Christchurch, which is the central heart of the city just east of Hagley Park, was practically lost with majority of its 3,000 buildings being damaged beyond repair. Widespread liquefaction in the suburbs of Christchurch, as well as rock falls and slope/cliff instabilities in the Port Hills affected tens of thousands of residential buildings and properties, and shattered the lifelines and infrastructure over approximately one third of the city area. The total economic loss caused by the 2010-2011 Christchurch earthquakes is currently estimated to be in the range between 25 and 30 billion NZ dollars (or 15% to 18% of New Zealand’s GDP). After each major earthquake, comprehensive field investigations and inspections were conducted to document the liquefaction-induced land damage, lateral spreading displacements and their impacts on buildings and infrastructure. In addition, the ground motions produced by the earthquakes were recorded by approximately 15 strong motion stations within (close to) the city boundaries providing and impressive wealth of data, records and observations of the performance of ground and various types of structures during this unusual sequence of strong local earthquakes affecting a city. This paper discusses the liquefaction in residential areas and focuses on its impacts on dwellings (residential houses) and potable water system in the Christchurch suburbs. The ground conditions of Christchurch including the depositional history of soils, their composition, age and groundwater regime are first discussed. Detailed liquefaction maps illustrating the extent and severity of liquefaction across Christchurch triggered by the sequence of earthquakes including multiple episodes of severe re-liquefaction are next presented. Characteristic liquefaction-induced damage to residential houses is then described focussing on the performance of typical house foundations in areas affected by liquefaction. Liquefaction impacts on the potable water system of Christchurch is also briefly summarized including correlation between the damage to the system, liquefaction severity, and the performance of different pipe materials. Finally, the characteristics of Christchurch liquefaction and its impacts on built environment are discussed in relation to the liquefaction-induced damage in Japan during the 11 March 2011 Great East Japan Earthquake.