Search

found 7 results

Research papers, University of Canterbury Library

This paper investigates the effects of variability in source rupture parameters on site-specific physics-based simulated ground motions, ascertained through the systematic analysis of ground motion intensity measures. As a preliminary study, we consider simulations of the 22 February 2011 Christchurch earthquake using the Graves and Pitarka (2015) methodology. The effects of source variability are considered via a sensitivity study in which parameters (hypocentre location, earthquake magnitude, average rupture velocity, fault geometry and the Brune stress parameter) are individually varied by one standard deviation. The sensitivity of simulated ground motion intensity measures are subsequently compared against observational data. The preliminary results from this study indicate that uncertainty in the stress parameter and the rupture velocity have the most significant effect on the high frequency amplitudes. Conversely, magnitude uncertainty was found to be most influential on the spectral acceleration amplitudes at low frequencies. Further work is required to extend this preliminary study to exhaustively consider more events and to include parameter covariance. The ultimate results of this research will assist in the validation of the overall simulation method’s accuracy in capturing various rupture parameters, which is essential for the use of simulated ground motion models in probabilistic seismic hazard analysis.

Research papers, University of Canterbury Library

On 15 August 1868, a great earthquake struck off the coast of the Chile-Peru border generating a tsunami that travelled across the Pacific. Wharekauri-Rekohu-Chatham Islands, located 800 km east of Christchurch, Aotearoa-New Zealand (A-NZ) was one of the worst affected locations in A-NZ. Tsunami waves, including three over 6 metres high, injured and killed people, destroyed buildings and infrastructure, and impacted the environment, economy and communities. While experience of disasters, and advancements in disaster risk reduction systems and technology have all significantly advanced A-NZ’s capacity to be ready for and respond to future earthquakes and tsunami, social memory of this event and other tsunamis during our history has diminished. In 2018, a team of scientists, emergency managers and communication specialists collaborated to organise a memorial event on the Chatham Islands and co-ordinate a multi-agency media campaign to commemorate the 150th anniversary of the 1868 Arica tsunami. The purpose was to raise awareness of the disaster and to encourage preparedness for future tsunami. Press releases and science stories were distributed widely by different media outlets and many attended the memorial event indicating public interest for commemorating historical disasters. We highlight the importance of commemorating disaster anniversaries through memorial events, to raise awareness of historical disasters and increase community preparedness for future events – “lest we forget and let us learn.”

Research papers, University of Canterbury Library

The Stone Jug Fault (SJF) ruptured during the November 14th, 2016 (at 12:02 am), Mw 7.8 Kaikōura Earthquake which initiated ~40 km west-southwest of the study area, at a depth of approximately 15 km. Preliminary post-earthquake mapping indicated that the SJF connects the Conway-Charwell and Hundalee faults, which form continuous surface rupture, however, detailed study of the SJF had not been undertaken prior to this thesis due to its remote location and mountainous topography. The SJF is 19 km long, has an average strike of ~160° and generally carries approximately equal components of sinistral and reverse displacement. The primary fault trace is sigmoidal in shape with the northern and southern tips rotating in strike from NNW to NW, as the SJF approaches the Hope and Hundalee faults. It comprises several steps and bends and is associated with many (N=48) secondary faults, which are commonly near irregularities in the main fault geometry and in a distributed fault zone at the southern tip. The SJF is generally parallel to Torlesse basement bedding where it may utilise pre-existing zones of weakness. Horizontal, vertical and net displacements range up to 1.4 m, with displacement profiles along the primary trace showing two main maxima separated by a minima towards the middle and ends of the fault. Average net displacement along the primary trace is ~0.4m, with local changes in relative values of horizontal and vertical displacement at least partly controlled by fault strike. Two trenches excavated across the northern segment of the fault revealed displacement of mainly Holocene stratigraphy dated using radiocarbon (N=2) and OSL (N=4) samples. Five surface-rupturing paleoearthquakes displaying vertical displacements of <1 m occurred at: 11,000±1000, 7500±1000, 6500±1000, 3500±100 and 3 (2016 Kaikōura) years BP. These events produce an average slip rate since ~11 ka of 0.2-0.4 mm/yr and recurrence intervals of up to 5500 years with an average recurrence interval of 2750 yrs. Comparison of these results with unpublished trench data suggests that synchronous rupture of the Hundalee, Stone Jug, Conway-Charwell, and Humps faults at ~3500 yrs BP cannot be discounted and it is possible that multi-fault ruptures in north Canterbury are more common than previously thought.

Research papers, University of Canterbury Library

The November 2016 MW 7.8 Kaikōura Earthquake initiated beneath the North Culverden basin on The Humps fault and propagated north-eastwards, rupturing at least 17 faults along a cumulative length of ~180 km. The geomorphic expression of The Humps Fault across the Emu Plains, along the NW margin of Culverden basin, comprises a series of near-parallel strands separated by up to 3 km across strike. The various strands strike east to east-northeast and have been projected to mainly dip steeply to the south in seismic data (~80°). In this area, the fault predominantly accommodates right-lateral slip, with uplift and subsidence confined to releasing and restraining bends and step-overs at a range of scales. The Kaikōura event ruptured pre-existing fault scarps along the Emu Plains, which had been partly identified prior to the earthquake. Geomorphology and faulting expression of The Humps Fault on The Emu Plains was mapped, along with faulting related structures which did not rupture in the 2016 earthquake. Fault ruptures strands are combined into sections and the kinematic deformation of sections analysed to provide a moment tensor fault plane solution. This fault plane solution is consistent with the regional principal horizontal shortening direction (PHS) of ~115°, similar to seismic focal mechanism solutions of some of the nearby aftershocks of the Kaikōura earthquake, and similar to the adjacent Hope Fault. To constrain the timing of paleoseismic events, a trench was excavated across the fault where it crossed a late Quaternary alluvial fan. Mapping of stratigraphy exposed in the trench walls, and dating of variably deformed strata, constrains the pre-historic earthquake event history at the trench site. The available data provides evidence for at least three paleo-earthquakes within the last 15.1 ka, with a possible fourth (penultimate) event. These events are estimated to have occurred at 7.7-10.3 ka, 10.3-14.8 ka, and one or more events that are older than ~15.1 ka. Some evidence suggests an additional penultimate event between 1850 C.E and 7.7 ka. Time-integrated slip-rates at three locations on the fault are measured using paleo-channels as piercing points. These sites give horizontal slip rates of 0.57 ± 0.1 mm/year, 0.49 ± 0.1 mm/year and one site constrains a minimum of between 0.1 - 0.4 mm/year. Two vertical slip-rates are calculated to be constrained to a maximum of 0.2 ± 0.02 mm/year at one site and between 0.02 and 0.1 mm/year at another site. Prior to this study, The Humps fault had only been partially documented in reconnaissance level mapping in the district, and no previous paleoseismic or slip rate data had been reported. This project has provided a detailed fault zone tectonic geomorphic map and established new slip-rate and paleoseismic data. The results highlight that The Humps fault plays an important role in regional seismicity and in accommodating plate boundary deformation across the North Canterbury region.

Research papers, University of Canterbury Library

This dissertation addresses a diverse range of topics in the physics-based broadband ground motion simulation, with a focus on New Zealand applications. In particular the following topics are addressed: the methodology and computational implementation of a New Zealand Velocity Model for broadband ground motion simulation; generalised parametric functions and spatial correlations for seismic velocities in the Canterbury, New Zealand region from surface-wave-based site characterisation; and ground motion simulations of Hope Fault earthquakes. The paragraphs below outline each contribution in more detail. A necessary component in physics-based ground motion simulation is a 3D model which details the seismic velocities in the region of interest. Here a velocity model construction methodology, its computational implementation, and application in the construction of a New Zealand velocity model for use in physics-based broadband ground motion simulation are presented. The methodology utilises multiple datasets spanning different length scales, which is enabled via the use of modular sub-regions, geologic surfaces, and parametric representations of crustal velocity. A number of efficiency-related workflows to decrease the overall computational construction time are employed, while maintaining the flexibility and extensibility to incorporate additional datasets and re- fined velocity parameterizations as they become available. The model comprises explicit representations of the Canterbury, Wellington, Nelson-Tasman, Kaikoura, Marlborough, Waiau, Hanmer and Cheviot sedimentary basins embedded within a regional travel-time tomography-based velocity model for the shallow crust and provides the means to conduct ground motion simulations throughout New Zealand for the first time. Recently developed deep shear-wave velocity profiles in Canterbury enabled models that better characterise the velocity structure within geologic layers of the Canterbury sedimentary basin to be developed. Here the development of depth- and Vs30-dependent para-metric velocity and spatial correlation models to characterise shear-wave velocities within the geologic layers of the Canterbury sedimentary basin are presented. The models utilise data from 22 shear-wave velocity profiles of up to 2.5km depth (derived from surface wave analysis) juxtaposed with models which detail the three-dimensional structure of the geologic formations in the Canterbury sedimentary basin. Parametric velocity equations are presented for Fine Grained Sediments, Gravels, and Tertiary layer groupings. Spatial correlations were developed and applied to generate three-dimensional stochastic velocity perturbations. Collectively, these models enable seismic velocities to be realistically represented for applications such as 3D ground motion and site response simulations. Lastly the New Zealand velocity model is applied to simulate ground motions for a Mw7.51 rupture of the Hope Fault using a physics-based simulation methodology and a 3D crustal velocity model of New Zealand. The simulation methodology was validated for use in the region through comparison with observations for a suite of historic small magnitude earthquakes located proximal to the Hope Fault. Simulations are compared with conventionally utilised empirical ground motion models, with simulated peak ground velocities being notably higher in regions with modelled sedimentary basins. A sensitivity analysis was undertaken where the source characteristics of magnitude, stress parameter, hypocentre location and kinematic slip distribution were varied and an analysis of their effect on ground motion intensities is presented. It was found that the magnitude and stress parameter strongly influenced long and short period ground motion amplitudes, respectively. Ground motion intensities for the Hope Fault scenario are compared with the 2016 Kaikoura Mw7.8 earthquake, it was found that the Kaikoura earthquake produced stronger motions along the eastern South Island, while the Hope Fault scenario resulted in stronger motions immediately West of the near-fault region. The simulated ground motions for this scenario complement prior empirically-based estimates and are informative for mitigation and emergency planning purposes.

Research papers, Lincoln University

Geographically isolated communities around the world are dependent upon the limited assets in local subsistence economies to generate livelihoods. Locally available resources shape and give identity to unique cultural activities that guarantee individual, family and community livelihood sustainability. The social structure provides community relationship networks, which ensure access to, and availability of, resources over long periods. Resources are utilised in ways that reduces vulnerability, stresses and shocks while ensuring long-term resilience. Preparedness and adaptation are embedded into cultural memory, enabling communities to survive in isolated, remote and harsh conditions. Communities’ cultural memories, storytelling, traditional knowledge, interdependence and unwritten cultural norms that build resilience to sustain cultures that have limited interactions with the outside world. This thesis aims to investigate the consequences of transport infrastructure development, mainly of roads, on livelihood strategies of isolated communities in a tourism context in Gilgit-Baltistan, Pakistan. The thesis incorporates a review of literature of transport infrastructure development and livelihood security in reference to vulnerability, resilience and sustainability. Research gaps are identified in terms of transport infrastructure development and tourism, the Sustainable Livelihood Approach, resilience and sustainability. The fieldwork was undertaken using qualitative research methods. Ninety-eight participants were interviewed using open-ended semi-structured interview questions to get an in-depth understanding of livelihood systems, livelihood activities and transport infrastructure development within the tourism context. Gilgit-Baltistan is a disputed mountainous territory in the Asia Subcontinent whose ancient trade routes (silk routes) were severed during the geopolitical upheaval of the partition of the Indian Subcontinent in 1947. An alliance between Pakistan and China resulted in transport infrastructure development of the Karakorum Highway between 1958 and 1978, providing the only road access to the regions isolated communities. Karakoram Highway connects China with Pakistan through Gilgit-Baltistan. Gilgit-Baltistan is going through immense transport infrastructure development, including the China Pakistan Economic Corridor. The road infrastructure is expected to link China and other South Asian and Central Asian countries to the world and provide a direct link for Chinese goods to reach the Persian Gulf. China Pakistan Economic Corridor is part of China’s Belt and Road Initiative project, which aims to improve connectivity and cooperation between 69 Eurasian countries by investing in infrastructure development. Such an immense infrastructural development is expected to enhance the mobility of people, goods and services. In order to understand the impacts of transport infrastructure development, this thesis has analysed livelihood capital status at macro, and micro levels are examined over two time periods (pre-road and post-road). Results show that sustainable farming practices provided long-term resilience to these geographically isolated communities. Transport infrastructure development has been a significant factor to ensure access and has resulted in changes to social inclusion, socio-political structures and livelihood opportunities with a subsequent dependence upon tourism, imported consumer goods and a monetary economy as people divert valuable farmland to building developments and cash crop monocultures. Gilgit-Baltistan is vulnerable to frequent manmade and natural disasters, such as terrorism, earthquakes and landslides. Shocks impact upon the livelihoods of those affiliated with tourism who are forced to revert to subsistence farming practices and alternative livelihood choices. The dependency on external resources and subsequent loss of the cultural memory and farming techniques has created a vulnerability to the unpredictable shocks and disasters that frequently close the singular access road. The thesis finally presents the ‘Livelihood Framework for Transport Infrastructure Development and Tourism (LF-TIDT)’ a guiding tool to understand the impacts of transport infrastructure development at micro and macro levels for tourism planning, policy formulation and implementation and management. Attention is drawn to the newly introduced ‘Location: a Meta Capital’ and its importance in terms of geographically isolated communities. The research also highlights that livelihood capitals are not equally essential to achieve sustainable and resilient livelihood outcomes.

Research papers, Victoria University of Wellington

The Canterbury earthquake sequence (2010-2011) was the most devastating catastrophe in New Zealand‘s modern history. Fortunately, in 2011 New Zealand had a high insurance penetration ratio, with more than 95% of residences being insured for these earthquakes. This dissertation sheds light on the functions of disaster insurance schemes and their role in economic recovery post-earthquakes.  The first chapter describes the demand and supply for earthquake insurance and provides insights about different public-private partnership earthquake insurance schemes around the world.  In the second chapter, we concentrate on three public earthquake insurance schemes in California, Japan, and New Zealand. The chapter examines what would have been the outcome had the system of insurance in Christchurch been different in the aftermath of the Canterbury earthquake sequence (CES). We focus on the California Earthquake Authority insurance program, and the Japanese Earthquake Reinsurance scheme. Overall, the aggregate cost of the earthquake to the New Zealand public insurer (the Earthquake Commission) was USD 6.2 billion. If a similar-sized disaster event had occurred in Japan and California, homeowners would have received only around USD 1.6 billion and USD 0.7 billion from the Japanese and Californian schemes, respectively. We further describe the spatial and distributive aspects of these scenarios and discuss some of the policy questions that emerge from this comparison.  The third chapter measures the longer-term effect of the CES on the local economy, using night-time light intensity measured from space, and focus on the role of insurance payments for damaged residential property during the local recovery process. Uniquely for this event, more than 95% of residential housing units were covered by insurance and almost all incurred some damage. However, insurance payments were staggered over 5 years, enabling us to identify their local impact. We find that night-time luminosity can capture the process of recovery; and that insurance payments contributed significantly to the process of local economic recovery after the earthquake. Yet, delayed payments were less affective in assisting recovery and cash settlement of claims were more effective than insurance-managed repairs.  After the Christchurch earthquakes, the government declared about 8000 houses as Red Zoned, prohibiting further developments in these properties, and offering the owners to buy them out. The government provided two options for owners: the first was full payment for both land and dwelling at the 2007 property evaluation, the second was payment for land, and the rest to be paid by the owner‘s insurance. Most people chose the second option. Using data from LINZ combined with data from Stats NZ, the fourth chapter empirically investigates what led people to choose this second option, and how peer effect influenced the homeowners‘ choices.  Due to climate change, public disclosure of coastal hazard information through maps and property reports have been used more frequently by local government. This is expected to raise awareness about disaster risks in local community and help potential property owners to make informed locational decision. However, media outlets and business sector argue that public hazard disclosure will cause a negative effect on property value. Despite this opposition, some district councils in New Zealand have attempted to implement improved disclosure. Kapiti Coast district in the Wellington region serves as a case study for this research. In the fifth chapter, we utilize the residential property sale data and coastal hazard maps from the local district council. This study employs a difference-in-difference hedonic property price approach to examine the effect of hazard disclosure on coastal property values. We also apply spatial hedonic regression methods, controlling for coastal amenities, as our robustness check. Our findings suggest that hazard designation has a statistically and economically insignificant impact on property values. Overall, the risk perception about coastal hazards should be more emphasized in communities.