This week on the blog, we look at what we found beneath a local landmark in the community of Lyttelton: the newly refurbished Albion Square. The Albion Square, on the corner of London and Canterbury streets, is home of the … Continue reading →
A video of an address by Keith Land, Head of Canterbury Land Settlement, EQC, at the 2015 Seismics and the City forum. This talk is about learning from complex claims and local knowledge.
A video of an address by Dr. Duncan Webb, Partner of Lane Neave, at the 2015 Seismics and the City forum. This talk is about learning from complex claims and local knowledge.
A video of an address by Geoff Cavell, Managing Director of Winnie Bagoes Holding Ltd, at the 2015 Seismics and the City forum. This talk is about learning from complex claims and local knowledge.
A video of an address by Peter Rose, Chief Executive of Southern Response Earthquake Services Limited, at the 2015 Seismics and the City forum. This talk is about learning from complex claims and local knowledge.
A video of an address by Brian Parker, Project Manager of Canterbury Communities' Earthquake Recovery Network (CanCERN) and Managing Director of Sharp Teaching, at the 2015 Seismics and the City forum. This talk is about learning from complex claims and local knowledge.
An electronic copy of the June 2015 edition of the Addington Times newsletter.
An electronic copy of the February 2015 edition of the Addington Times newsletter.
An electronic copy of the May 2015 edition of the Addington Times newsletter.
An electronic copy of the July 2015 edition of the Addington Times newsletter.
An electronic copy of the September 2015 edition of the Addington Times newsletter.
An electronic copy of the August 2015 edition of the Addington Times newsletter.
An electronic copy of the November 2015 edition of the Addington Times newsletter.
An electronic copy of the December 2015 edition of the Addington Times newsletter.
An electronic copy of the October 2015 edition of the Addington Times newsletter.
An electronic copy of the April/May 2015 edition of the St Albans News newsletter.
An electronic copy of the June/July 2015 edition of the St Albans News newsletter.
An electronic copy of the August/September 2015 edition of the St Albans News newsletter.
An electronic copy of the October/November 2015 edition of the St Albans News newsletter.
An electronic copy of the February/March 2015 edition of the St Albans News newsletter.
‘Housing affordability’ has been a term used to refer to a problem that arises when the costs of housing are seen as being unreasonably high in relation to incomes. In the United Kingdom and Australia the local town planning systems have been used to address housing affordability issues. This response in countries that share New Zealand’s town and country planning history raised the question for this research of the local government response to housing affordability issues in the city of Christchurch, New Zealand. This research was undertaken during the fifth year after the 2010/2011 Canterbury earthquake series. Research conducted by the Centre for Housing Research
Aotearoa New Zealand and the New Zealand Productivity Commission present quite different pictures of the housing affordability problem, suggest different solutions and indicate different roles for levels of government, the community housing sector and the housing market. The research undertaken for this dissertation aimed to address the question of the role of the state, through the lense of a local response to housing affordability issues, in the context of a central government response focused on land supply and reforming the Resource Management Act 1991.
An electronic copy of the December 2015/January 2016 edition of the St Albans News newsletter.
This thesis addresses the topic of local bond behaviour in RC structures. The mechanism of bond refers to the composite action between deformed steel reinforcing bars and the surrounding concrete. Bond behaviour is an open research topic with a wide scope, particularly because bond it is such a fundamental concept to structural engineers. However, despite many bond-related research findings having wide applications, the primary contribution of this research is an experimental evaluation of the prominent features of local bond behaviour and the associated implications for the seismic performance of RC structures. The findings presented in this thesis attempt to address some structural engineering recommendations made by the Canterbury Earthquakes Royal Commission following the 2010-2011 Canterbury (New Zealand) earthquake sequence. A chapter of this thesis discusses the structural behaviour of flexure-dominated RC wall structures with an insufficient quantity of longitudinal reinforcement, among other in situ conditions, that causes material damage to predominantly occur at a single crack plane. In this particular case, the extent of concrete damage and bond deterioration adjacent to the crack plane will influence the ductility capacity that is effectively provided by the reinforcing steel. As a consequence of these in situ conditions, some lightly reinforced wall buildings in Christchurch lost their structural integrity due to brittle fracture of the longitudinal reinforcement. With these concerning post-earthquake observations in mind, there is the underlying intention that this thesis presents experimental evidence of bond behaviour that allows structural engineers to re-assess their confidence levels for the ability of lightly reinforced concrete structures to achieve the life-safety seismic performance objective the ultimate limit state. Three chapters of this thesis are devoted to the experimental work that was conducted as the main contribution of this research. Critical details of the experimental design, bond testing method and test programme are reported. The bond stress-slip relationship was studied through 75 bond pull-out tests. In order to measure the maximum local bond strength, all bond tests were carried out on deformed reinforcing bars that did not yield as the embedded bond length was relatively short. Bond test results have been presented in two separate chapters in which 48 monotonic bond tests and 27 cyclic bond tests are presented. Permutations of the experiments include the loading rate, cyclic loading history, concrete strength (25 to 70 MPa), concrete age, cover thickness, bar diameter (16 and 20 mm), embedded length, and position of the embedded bond region within the specimen (close or far away to the free surface). The parametric study showed that the concrete strength significantly influences the maximum bond strength and that it is reasonable to normalise the bond stress by the square-root of the concrete compressive strength, √(f'c). The generalised monotonic bond behaviour is described within. An important outcome of the research is that the measured bond strength and stiffness was higher than stated by the bond stress-slip relationship in the fib Model Code 2010. To account for these observed differences, an alternative model is proposed for the local monotonic bond stress-slip relationship. Cyclic bond tests showed a significant proportion of the total bond degradation occurs after the loading cycle in the peak bond strength range, which is when bond slip has exceeded 0.5 mm. Subsequent loading to constant slip values showed a linear relationship between the amount of bond strength degradation and the log of the number of cycles that were applied. To a greater extent, the cyclic bond deterioration depends on the bond slip range, regardless of whether the applied load cycling is half- or fully-reversed. The observed bond deterioration and hysteretic energy dissipated during cyclic loading was found to agree reasonably well between these cyclic tests with different loading protocols. The cyclic bond deterioration was also found to be reasonably consistent exponential damage models found in the literature. This research concluded that the deformed reinforcing bars used in NZ construction, embedded in moderate to high strength concrete, are able to develop high local bond stresses that are mobilised by a small amount of local bond slip. Although the relative rib geometry was not varied within this experimental programme, a general conclusion of this thesis is that deformed bars currently available in NZ have a relative rib bearing area that is comparatively higher than the test bars used in previous international research. From the parametric study it was found that the maximum monotonic bond strength is significant enhanced by dynamic loading rates. Experimental evidence of high bond strength and initial bond stiffness generally suggests that only a small amount of local bond slip that can occur when the deformed test bar was subjected to large tension forces. Minimal bond slip and bond damage limits the effective yielding length that is available for the reinforcing steel to distribute inelastic material strains. Consequently, the potential for brittle fracture of the reinforcement may be a more problematic and widespread issue than is apparent to structural engineers. This research has provided information that improve the reliability of engineering predictions (with respect to ductility capacity) of maximum crack widths and the extent of bond deterioration that might occur in RC structures during seismic actions.
Local independent radio stations in Christchurch, New Zealand, had their operations severely disrupted by major earthquakes in September 2010 and February 2011. This article examines the experiences of three radio stations that were shut out of their central city premises by the cordon drawn around the city after the 22 February quake. One of the stations continued broadcasting automatically, while the others were unable to fully get back on air for several weeks afterwards. All of the stations had to manage access to workspaces, the emotional needs of staff and volunteers, the technical ability to broadcast, and the need to adapt content appropriately when back on air. For the locally based radio managers decisions had to be made about the future of the stations in a time of significant emotional, physical, and geological upheaval. The article explores how these radio stations were disrupted by the earthquake, and how they returned to air through new combinations and interconnections of people, workspace, technology, content and transmission.
The need for a simple but rigorous seismic assessment procedure to predict damage to reinforced concrete buildings during a seismic event has been highlighted following the Canterbury Earthquake sequence. Such simplified assessment procedure, applied to individual structure or large building inventory, should not only have low requirement in terms of input information and involve straightforward analyses, but also should be capable to provide reliable predictive results within short timeframe. This research provides a general overview and critical comparison of alternative simplified assessment procedures adopted in NZSEE 2006 Guidelines (Assessment and Improvement of the Structural Performance of Buildings in Earthquakes), ASCE 41-13 (Seismic Evaluation and Retrofit of Existing Buildings), and EN: 1998-3: 2005 (Assessment and Retrofitting of Buildings). Particular focus is given to the evaluation of the capability of Simplified Lateral Mechanism Analysis (SLaMa), which is an analytical pushover method adopted in NZSEE 2006 Guidelines. The predictive results from SLaMa are compared to damages observed for a set of reinforced concrete buildings in Christchurch, as well as the results from more detailed assessment procedure based on numerical modelling. This research also suggests improvements to SLaMa, together with validation of the improvements, to include assessment of local mechanism by strength hierarchy evaluation, as well as to develop assessment of global mechanism including post-yield mechanism sequence based on local mechanism.
The New Zealand city of Christchurch suffered a series of devastating earthquakes in 2010-11 that changed the urban landscape forever. A new rebuilt city is now underway, largely based on the expressed wishes of the populace to see Christchurch return to being a more people-oriented, cycle-friendly city that it was known for in decades past. Currently 7% of commuters cycle to work, supported by a 200km network of mostly conventional on-road painted cycle lanes and off-road shared paths. The new "Major Cycleways" plan aims to develop approximately 100km of high-quality cycling routes throughout the city in 5-7 years. The target audience is an unaccompanied 10-year-old cycling, which requires more separated cycleways and low-volume/speed "neighbourhood greenways" to meet this standard. This presentation summarises the steps undertaken to date to start delivering this network. Various pieces of research have helped to identify the types of infrastructure preferred by those currently not regularly cycling, as well as helping to assess the merits of different route choices. Conceptual cycleway guidelines have now been translated into detailed design principles for the different types of infrastructure being planned. While much of this work is based on successful designs from overseas, including professional advice from Dutch practitioners, an interesting challenge has been to adapt these designs as required to suit local road environments and road user expectations. The first parts of the new network are being rolled out now, with the hope that this will produce an attractive and resilient network for the future population that leads to cycling being a major part of the local way of life.
There has been little discussion of what archival accounting evidence can contribute to an understanding of a society’s response to a natural disaster. This article focuses on two severe earthquakes which struck New Zealand in 1929 and 1931 and makes two main contributions to accounting history. First, by discussing evidence from archival sources, it contributes to the literature on accounting in a disaster. This provides a basis for future theory building and for future comparative research related to the response to more recent natural disasters such as the 2010–11 Canterbury earthquakes. Secondly, it questions the conclusions of recently published research concerning the role of central and local government in this and recent earthquakes.
Prior to the devastating 2010 and 2011 earthquakes in Christchurch, New Zealand, the University of Canterbury (UC) was renowned for its graduates’ academic preparation and its staff’s research outputs. The town/gown relationship was aloof and strained due to UC’s move from the CBD in the 1970s and students being seen as troublemakers. Despite its vision of people prepared to make a difference, the University’s students and staff were not seen as making a difference in the local community or as being engaged citizens.
This changed when over 9,000 UC students mobilized themselves into the Student Volunteer Army to provide immediate relief across Christchurch following the four major quakes of 2010 and 2011. Suddenly, UC students were seen as saviors, not miscreants and a focus on citizenship education as part of the University’s strategic direction began to take shape.
Based on qualitative and quantitative research conducted at UC over the past four years, this interactive presentation will highlight the findings, conclusions, and implications of how the University has been transformed into a recognized, international leader in citizenship education. By integrating students’ community service into their academic studies, the University has changed its persona while students have gained academically, civically, and personally.
This report summarizes the development of a region-wide surficial soil shear wave velocity (Vs ) model based on the unique combination of a large high-spatial-density database of cone penetration test (CPT) logs in the greater Christchurch urban area (> 15, 000 logs as of 1 February 2014) and the Christchurch-specific empirical correlation between soil Vs and CPT data developed by McGann et al. [1, 2]. This model has applications for site characterization efforts via maps of time-averaged Vs over specific depths (e.g. Vs30, Vs10), and for numerical modeling efforts via the identification of typical Vs profiles for different regions and soil behaviour types within Christchurch. In addition, the Vs model can be used to constrain the near-surface velocities for the 3D seismic velocity model of the Canterbury basin [3] currently being developed for the purpose of broadband ground motion simulation. The general development of these region-wide near-surface Vs models includes the following general phases, with each discussed in separate chapters of this report. • An evaluation of the available CPT dataset for suitability, and the definition of other datasets and assumptions necessary to characterize the surficial sediments of the region to 30 m depth. • The development of time-averaged shear wave velocity (Vsz) surfaces for the Christchurch area from the adopted CPT dataset (and supplementary data/assumptions) using spatial interpolation. The Vsz surfaces are used to explore the characteristics of the near-surface soils in the regions and are shown to correspond well with known features of the local geology, the historical ecosystems of the area, and observations made following the 2010- 2011 Canterbury earthquakes. • A detailed analysis of the Vs profiles in eight subregions of Christchurch is performed to assess the variablity in the soil profiles for regions with similar Vsz values and to assess Vsz as a predictive metric for local site response. It is shown that the distrubution of soil shear wave velocity in the Christchurch regions is highly variable both spatially (horizontally) and with depth (vertically) due to the varied geological histories for different parts of the area, and the highly stratified nature of the nearsurface deposits. This variability is not considered to be greatly significant in terms of current simplified site classification systems; based on computed Vs30 values, all considered regions can be categorized as NEHRP sites class D (180 < Vs < 360 m/s) or E (Vs < 180 m/s), however, detailed analysis of the shear wave velocity profiles in different subregions of Christchurch show that the expected surficial site response can vary quite a bit across the region despite the relative similarity in Vs30
The self-regulation approach to educating parents focusses on promoting parenting confidence, independence, and the ability to solve future problems. As parents learn the skills to modify their own behaviour, in turn, they aim to foster self-regulation in their children/adolescents. A need had been identified by Christchurch school principals for the Ministry of Education to respond to the post-earthquake stress in local families. The aim of this study was to investigate if a parenting programme was effective in promoting parental self-management skills and adolescent behaviour change in Christchurch families affected by earthquakes between 2010 and 2012. A single case research design was used to follow five families with adolescents (12-16 years old) as they participated in a Group Teen Triple P – Positive Parenting Programme. Measures of self-management skill acquisition were taken during three family discussions (pre-intervention, mid-intervention, and post-intervention) and during the three telephone consultations (Sessions 5-7). Adolescent target behaviour tallies were also analysed for change. The main findings showed that parental self-management skill acquisition increased over-time accompanied by positive change in adolescent behaviour. Additionally, the results suggested that higher rates and levels of self-management skill acquisition in the parents were associated with greater improvements in adolescent behaviour. This study demonstrated that Group Teen Triple P – Positive Parenting Programme was effective in promoting self-management competencies in parents and behaviour change in adolescents.