A report detailing the Liquefaction Trial, the observations, and discussions of the trial interpretation and findings.
A video filmed during the Liquefaction Trial detonation and immediately following (run time approximately one minute).
The Canterbury Earthquake Sequence 2010-2011 (CES) induced widespread liquefaction in many parts of Christchurch city. Liquefaction was more commonly observed in the eastern suburbs and along the Avon River where the soils were characterised by thick sandy deposits with a shallow water table. On the other hand, suburbs to the north, west and south of the CBD (e.g. Riccarton, Papanui) exhibited less severe to no liquefaction. These soils were more commonly characterised by inter-layered liquefiable and non-liquefiable deposits. As part of a related large-scale study of the performance of Christchurch soils during the CES, detailed borehole data including CPT, Vs and Vp have been collected for 55 sites in Christchurch. For this subset of Christchurch sites, predictions of liquefaction triggering using the simplified method (Boulanger & Idriss, 2014) indicated that liquefaction was over-predicted for 94% of sites that did not manifest liquefaction during the CES, and under-predicted for 50% of sites that did manifest liquefaction. The focus of this study was to investigate these discrepancies between prediction and observation. To assess if these discrepancies were due to soil-layer interaction and to determine the effect that soil stratification has on the develop-ment of liquefaction and the system response of soil deposits.
A house in Richmond surrounded by flooding and liquefaction. The photographer comments, "Liquefaction and overflow from Dudley Creek flooded the section".
A push lawnmower sits in liquefaction silt beside the porch of a house. The photographer comments, "A friend's house, liquefaction covers the front lawn".
A pile of liquefaction silt on the side of a street in Richmond. The photographer comments, "Liquefaction silt took several weeks to be cleared away".
To identify key ground characteristics that led to different liquefaction manifestations during the Canterbury earthquakes
A 'sand volcano' of liquefaction in a crack in a gravel driveway beside a house in Richmond. The photographer comments, "Liquefaction in back yard".
A man inspects damage to his garden. Liquefaction and cracking can be seen on the path and lawn. The photographer comments, "Lateral spreading and liquefaction".
A wheelbarrow sits on a liquefaction-covered lawn in front of a house. The photographer comments, "Liquefaction covers a lawn for the 2nd time in 6 months".
A man walks across his cracked and liquefaction-covered lawn in Richmond. The photographer comments, "Andy Corbin checks liquefaction and surface water in his lawn".
Cars raise dust from dried liquefaction on Westminster Street in St Albans, near the intersection with Forfar Street. The photographer comments, "Dust from dried liquefaction made everything grey and gritty".
Cars raise dust from dried liquefaction on Westminster Street in St Albans, near the intersection with Forfar Street. The photographer comments, "Dust from dried liquefaction made everything grey and gritty".
A truck on Warden Street in Shirley waits to be loaded with liquefaction silt, which a digger in the background is scraping off the road. The photographer comments, "Liquefaction clean-up".
Part of the forecourt at the Shell Shirley petrol station has lifted above the rest, after the underground petrol tanks were pushed upwards by liquefaction. Liquefaction silt covers the lower part of the forecourt.
Flooding and liquefaction surround a house in Richmond.
Flooding and liquefaction on Edward Avenue in St Albans.
Damage to River Road in Richmond. The road surface is badly cracked and slumped, and liquefaction silt covers part of the road. The photographer comments, "Liquefaction in River Rd. This is minor compared to many streets in town".
Part of the forecourt at the Shell Shirley petrol station has lifted above the rest, after the underground petrol tanks were pushed upwards by liquefaction. Liquefaction silt covers the lower part of the forecourt. The photographer comments, "Tanks at Shell Shirley floated out of the ground".
Flooding and liquefaction outside a house on Edward Avenue in St Albans.
Background Liquefaction induced land damage has been identified in more than 13 notable New Zealand earthquakes within the past 150 years, as presented on the timeline below. Following the 2010-2011 Canterbury Earthquake Sequence (CES), the consequences of liquefaction were witnessed first-hand in the city of Christchurch and as a result the demand for understanding this phenomenon was heightened. Government, local councils, insurers and many other stakeholders are now looking to research and understand their exposure to this natural hazard.
Earthquake-triggered soil liquefaction caused extensive damage and heavy economic losses in Christchurch during the 2010-2011 Canterbury earthquakes. The most severe manifestations of liquefaction were associated with the presence of natural deposits of clean sands and silty sands of fluvial origin. However, liquefaction resistance of fines-containing sands is commonly inferred from empirical relationships based on clean sands (i.e. sands with less than 5% fines). Hence, existing evaluation methods have poor accuracy when applied to silty sands. Also, existing methods do not quantify appropriately the influence on liquefaction resistance of soil fabric and structure, which are unique to a specific depositional environment. This study looks at the influence of fines content, soil fabric (i.e. arrangement of soil particles) and structure (e.g. layering, segregation) on the undrained cyclic behaviour and liquefaction resistance of fines-containing sandy soils from Christchurch using Direct Simple Shear (DSS) tests on soil specimens reconstituted in the laboratory with the water sedimentation technique. The poster describes experimental procedures and presents early test results on two sands retrieved at two different sites in Christchurch.
The sewage treatment ponds in Bromley. In the distance trucks and diggers can be seen piling up liquefaction silt. The photographer comments, "Looking NW from the causeway through the sewage wetlands. Mountains of liquefaction silt are being piled up near the corner of Breezes Rd and SH74-Anzac Drive".
Trucks and diggers build large piles of liquefaction silt. In the foreground can be seen the Bromley sewage treatment ponds. The photographer comments, "Looking NW from the causeway through the sewage wetlands. Mountains of liquefaction silt are being piled up near the corner of Breezes Rd and SH74-Anzac Drive".
Earthquake-triggered soil liquefaction caused extensive damage and heavy economic losses in Christchurch during the 2010-2011 Canterbury earthquakes. The most severe manifestations of liquefaction were associated with the presence of natural deposits of clean sands and silty sands of fluvial origin. However, liquefaction resistance of fines-containing sands is commonly inferred from empirical relationships based on clean sands (i.e. sands with less than 5% fines). Hence, existing evaluation methods have poor accuracy when applied to silty sands. The liquefaction behaviour of Christchurch fines-containing (silty) sands is investigated through a series of Direct Simple Shear (DSS) tests. This type of test better resembles earthquake loading conditions in soil deposits compared to cyclic triaxial tests. Soil specimens are reconstituted in the laboratory with the water sedimentation technique. This preparation method yields soil fabrics similar to those encountered in fluvial soil deposits, which are common in the Christchurch area. Test results provide preliminary indications on how void ratio, relative density, preparation method and fines content influence the cyclic liquefaction behaviour of sand-silt mixtures depending on the properties of host sand and silt.
Flooding and liquefaction on the corner of Edward Avenue and Geraldine Street in St Albans.
Trucks and diggers build large piles of liquefaction silt. One pile has been covered with plastic sheeting, weighted down with tyres. In the foreground can be seen the Bromley sewage treatment ponds. The photographer comments, "Looking NW from the causeway through the sewage wetlands. Mountains of liquefaction silt are being piled up near the corner of Breezes Rd and SH74-Anzac Drive".
Trucks and diggers build large piles of liquefaction silt. One pile has been covered with plastic sheeting, weighted down with tyres. In the foreground can be seen the Bromley sewage treatment ponds. The photographer comments, "Looking NW from the causeway through the sewage wetlands. Mountains of liquefaction silt are being piled up near the corner of Breezes Rd and SH74-Anzac Drive".
Flooding and liquefaction on Geraldine Street in St Albans. The photographer comments, "Geraldine St and Edward Ave corner".
Footprints in liquefaction silt on the side of a residential street. The photographer comments, "Silt has accumulated everywhere".