Search

found 14 results

Audio, Radio New Zealand

National Manager Special Operations, New Zealand Fire Service, who lead the Urban Search and Rescue Teams in the aftermath of the Christchurch earthquake. He then lead the New Zealand USAR team which travelled to Northern Japan to assist after the earthquake and tsunami there.

Audio, Radio New Zealand

Iwi from Northland, Bay of Plenty, the East Coast and Taranaki are joining a pan-tribal hui against new oil drilling and mining; Marae and Maori families around the country are opening their doors to Canterbury earthquake victims who have also suffered from domestic violence; The lead agency for Whanau Ora in Whangarei says it could do with a few more Nannies-on-Wheels.

Audio, Radio New Zealand

A review of the week's news including: Labour struggling to put a dent in the National Party's lead in the polls, questions over Israelis caught up in the Christchurch earthquake, the latest from the Pike River Mine inquiry, electricity price rises fuelling inflation, an Auckland school wanting all students to take an iPad to class and Steve Williams dropped as Tiger Wood's caddy.

Audio, Radio New Zealand

Several iwi are joining a pan-tribal hui against new oil drilling and mining; The body of the former Maori Women's Welfare League national president, Meagan Joe, will be moved from a Napier marae to another in Mohaka in northern Hawkes Bay later today; Marae and Maori families around the country are opening their doors to Canterbury earthquake victims who have also suffered from domestic violence; The lead agency for Whanau Ora in Whangarei says it could use a few more Nannies on Wheels.

Images, Alexander Turnbull Library

Text reads 'What??... Is it another quake?.. No, it's just Gerry Brownlee rushing the CERA bill through'. The cartoon shows the huge back of Minister for Christchurch Recovery Gerry Brownlee moving energetically and forcefully to get the CERA bill past its third reading. Context - The bill establishes the Canterbury Earthquake Recovery Authority (Cera) and empowers it to lead reconstruction efforts in Christchurch. It gives Cera specific powers to get information from any source, to requisition and build on land and to carry out demolitions. It can also take over local authorities if they are not working effectively on recovery work. Quantity: 1 digital cartoon(s).

Images, Alexander Turnbull Library

Minister for Christchurch Recovery, Gerry Brownlee drives a huge tractor among debris that spells out 'Due Process' and says 'In order to get Christchurch back on its feet again we have to bring parliament to its knees. Context - The minister says he is happy with the speed of the work being done, as he wants tomake sure those involved in the rebuild portion of the recovery effort are well prepared. The bill establishes the Canterbury Earthquake Recovery Authority (Cera) and empowers it to lead reconstruction efforts in Christchurch. It gives Cera specific powers to get information from any source, to requisition and build on land and to carry out demolitions. It can also take over local authorities if they are not working effectively on recovery work. Quantity: 1 digital cartoon(s).

Images, Alexander Turnbull Library

The cartoon shows Prime Minister John Key as a surgeon in a blood-spattered white coat; he has just created a Frankenstein monster which has resulted in the Minister for Earthquake Recovery Gerry Brownlee and Mayor of Christchurch Bob Parker joined together in a single body named 'CERA". Gerry Brownlee clutches a huge spiked mallet and Bob Parker a paintbrush. Context - a new bill is being rushed through parliament to establish the Canterbury Earthquake Recovery Authority (Cera); it empowers it to lead reconstruction efforts in Christchurch. It gives Cera specific powers to get information from any source, to requisition and build on land and to carry out demolitions. It can also take over local authorities if they are not working effectively on recovery work. The monster suggests distinctly differing philosophies on how the work of rebuilding Christchurch should proceed. Quantity: 1 digital cartoon(s).

Research papers, University of Canterbury Library

Disasters can create the equivalent of 20 years of waste in only a few days. Disaster waste can have direct impacts on public health and safety, and on the environment. The management of such waste has a great direct cost to society in terms of labor, equipment, processing, transport and disposal. Disaster waste management also has indirect costs, in the sense that slow management can slow down a recovery, greatly affecting the ability of commerce and industry to re-start. In addition, a disaster can lead to the disruption of normal solid waste management systems, or result in inappropriate management that leads to expensive environmental remediation. Finally, there are social impacts implicit in disaster waste management decisions because of psychological impact we expect when waste is not cleared quickly or is cleared too quickly. The paper gives an overview of the challenge of disaster waste management, examining issues of waste quantity and composition; waste treatment; environmental, economic, and social impacts; health and safety matters; and planning. Christchurch, New Zealand, and the broader region of Canterbury were impacted during this research by a series of shallow earthquakes. This has led to the largest natural disaster emergency in New Zealand’s history, and the management of approximately 8 million tons of building and infrastructure debris has become a major issue. The paper provides an overview of the status of disaster waste management in Christchurch as a case study. A key conclusion is the vital role of planning in effective disaster waste management. In spite of the frequency of disasters, in most countries the ratio of time spent on planning for disaster waste management to the time spent on normal waste management is extremely low. Disaster waste management also requires improved education or training of those involved in response efforts. All solid waste professionals have a role to play to respond to the challenges of disaster waste management.

Research papers, University of Canterbury Library

Currently there is a worldwide renaissance in timber building design. At the University of Canterbury, new structural systems for commercial multistorey timber buildings have been under development since 2005. These systems incorporate large timber sections connected by high strength post-tensioning tendons, and timber-concrete composite floor systems, and aim to compete with existing structural systems in terms of cost, constructability, operational and seismic performance. The development of post-tensioned timber systems has created a need for improved lateral force design approaches for timber buildings. Current code provisions for seismic design are based on the strength of the structure, and do not adequately account for its deformation. Because timber buildings are often governed by deflection, rather than strength, this can lead to the exceedence of design displacement limitations imposed by New Zealand codes. Therefore, accurate modeling approaches which define both the strength and deformation of post-tensioned timber buildings are required. Furthermore, experimental testing is required to verify the accuracy of these models. This thesis focuses on the development and experimental verification of modeling approaches for the lateral force design of post-tensioned timber frame and wall buildings. The experimentation consisted of uni-direcitonal and bi-directional quasi-static earthquake simulation on a two-thirds scale, two-storey post-tensioned timber frame and wall building with timber-concrete composite floors. The building was subjected to lateral drifts of up to 3% and demonstrated excellent seismic performance, exhibiting little damage. The building was instrumented and analyzed, providing data for the calibration of analytical and numerical models. Analytical and numerical models were developed for frame, wall and floor systems that account for significant deformation components. The models predicted the strength of the structural systems for a given design performance level. The static responses predicted by the models were compared with both experimental data and finite element models to evaluate their accuracy. The frame, wall and floor models were then incorporated into an existing lateral force design procedure known as displacement-based design and used to design several frame and wall structural systems. Predictions of key engineering demand parameters, such as displacement, drift, interstorey shear, interstorey moment and floor accelerations, were compared with the results of dynamic time-history analysis. It was concluded that the numerical and analytical models, presented in this thesis, are a sound basis for determining the lateral response of post-tensioned timber buildings. However, future research is required to further verify and improve these prediction models.