A pile of bricks, insulation, and pieces of chimney flue awaiting collection beside Burwood Road in Burwood.
Recycled metal sheets nailed to the sides of the 10m2 office building for insulation.
A photograph of fallen ceiling tiles and insulation in a computer room at the University of Canterbury.
A photograph of fallen ceiling tiles and insulation in a computer room at the University of Canterbury.
A photograph of a corner of the Civil Suite at the University of Canterbury after the 4 September 2010 earthquake. The photograph was taken on the day when the staff were allowed to return to the building. One of the ceiling panels has fallen onto a desk below, exposing the insulation underneath.
Wood and pink insulation batts on Canterbury Street in Lyttelton. This construction material has been stripped from the exterior of a house.
The construction of the 10 square metre office building which is to serve as Gap Filler Headquarters. Two men add insulation to the back wall.
A house on Canterbury Street in Lyttelton with a damaged outer wall. The bricks have fallen away to expose the insulation. Cracks can be seen running diagonally along the remaining wall. Fencing and tape have been placed around the building to warn people off.
Asset management in power systems is exercised to improve network reliability to provide confidence and security for customers and asset owners. While there are well-established reliability metrics that are used to measure and manage business-as-usual disruptions, an increasing appreciation of the consequences of low-probability high-impact events means that resilience is increasingly being factored into asset management in order to provide robustness and redundancy to components and wider networks. This is particularly important for electricity systems, given that a range of other infrastructure lifelines depend upon their operation. The 2010-2011 Canterbury Earthquake Sequence provides valuable insights into electricity system criticality and resilience in the face of severe earthquake impacts. While above-ground assets are relatively easy to monitor and repair, underground assets such as cables emplaced across wide areas in the distribution network are difficult to monitor, identify faults on, and repair. This study has characterised in detail the impacts to buried electricity cables in Christchurch resulting from seismically-induced ground deformation caused primarily by liquefaction and lateral spread. Primary modes of failure include cable bending, stretching, insulation damage, joint braking and, being pulled off other equipment such as substation connections. Performance and repair data have been compiled into a detailed geospatial database, which in combination with spatial models of peak ground acceleration, peak ground velocity and ground deformation, will be used to establish rigorous relationships between seismicity and performance. These metrics will be used to inform asset owners of network performance in future earthquakes, further assess component criticality, and provide resilience metrics.