Transcript of Hugh's earthquake story
Articles, UC QuakeStudies
A pdf transcript of Hugh's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Samuel Hope. Transcriber: Josie Hepburn.
A pdf transcript of Hugh's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Samuel Hope. Transcriber: Josie Hepburn.
A pdf transcript of Fiona Robertson's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Samuel Hope. Transcriber: Natalie Looyer.
A pdf transcript of Julie's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Samuel Hope. Transcriber: Natalie Looyer.
A pdf transcript of Rosie Belton's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Laura Moir. Transcriber: Josie Hepburn.
A pdf transcript of Aaron Tremaine's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Laura Moir. Transcriber: Maggie Blackwood.
A pdf transcript of Kathryn's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Joshua Black. Transcriber: Maggie Blackwood.
A story submitted by Cathryn Bridges to the QuakeStories collection.
A story submitted by Melody to the QuakeStories website.
A pdf transcript of Darren Tatom's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Samuel Hope. Transcriber: Samuel Hope.
An edited copy of the pdf transcript of Caroline Murray's second earthquake story, captured by the UC QuakeBox Take 2 project. At the participant's request, parts of this transcript have been redacted. Interviewer: Paul Millar. Transcriber: Maggie Blackwood.
A pdf transcript of Sally Roome's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Samuel Hope. Transcriber: Jennifer Middendorf.
A pdf transcript of Mutu's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Lucy Denham. Transcriber: Maggie Blackwood.
A pdf transcript of Julie's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Rosemary Du Plessis. Transcriber: Natalie Looyer.
A pdf transcript of Sarah Shaw's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Samuel Hope. Transcriber: Samuel Hope.
A pdf transcript of Lee-Ray Ozanne's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Lucy Denham. Transcriber: Lucy Denham.
A pdf transcript of Participant number LY967's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Samuel Hope. Transcriber: Maggie Blackwood.
A pdf transcript of Tania's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Laura Moir. Transcriber: Lucy Denham.
A pdf transcript of Diane Hyde's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Paul Millar. Transcriber: Natalie Looyer.
A pdf transcript of Andrea's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Samuel Hope. Transcriber: Josie Hepburn.
A pdf transcript of Ann's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Samuel Hope. Transcriber: Josie Hepburn.
Designing a structure for higher- than-code seismic performance can result in significant economic and environmental benefits. This higher performance can be achieved using the principles of Performance-Based Design, in which engineers design structures to minimize the probabilistic lifecycle seismic impacts on a building. Although the concept of Performance-Based Design is not particularly new, the initial capital costs associated with designing structures for higher performance have historically hindered the widespread adoption of performance-based design practices. To overcome this roadblock, this research is focused on providing policy makers and stakeholders with evidence-based environmental incentives for designing structures in New Zealand for higher seismic performance. In the first phase of the research, the environmental impacts of demolitions in Christchurch following the Canterbury Earthquakes were quantified to demonstrate the environmental consequences of demolitions following seismic events. That is the focus here. A building data set consisting of 142 concrete buildings that were demolished following the earthquake was used to quantify the environmental impacts of the demolitions in terms of the embodied carbon and energy in the building materials. A reduced set of buildings was used to develop a material takeoff model to estimate material quantities in the entire building set, and a lifecycle assessment tool was used to calculate the embodied carbon and energy in the materials. The results revealed staggering impacts in terms of the embodied carbon and energy in the materials in the demolished buildings. Ongoing work is focused developing an environmental impact framework that incorporates all the complex factors (e.g. construction methodologies, repair methodologies (if applicable), demolition methodologies (if applicable), and waste management) that contribute to the environmental impacts of building repair and demolition following earthquakes.
An edited copy of the pdf transcript of Laura's second earthquake story, captured by the UC QuakeBox Take 2 project. At the participant's request, parts of this transcript have been redacted. Interviewer: Jennifer Middendorf. Transcriber: Laura Moir.
How do you help children cope with a life-threatening incident? And what if you’re stressed yourself? Katy Gosset looks at the far reaching emotional effects of the Canterbury earthquakes.
With sea level rise (SLR) fast becoming one of the most pressing matters for governments worldwide, there has been mass amounts of research done on the impacts of SLR. However, these studies have largely focussed on the ways that SLR will impact both the natural and built environment, along with how the risk to low-lying coastal communities can be mitigated, while the inevitable impacts that this will have on mental well-being has been understudied. This research has attempted to determine the ways in which SLR can impact the mental well-being of those living in a low-lying coastal community, along with how these impacts could be mitigated while remaining adaptable to future environmental change. This was done through conducting an in-depth literature review to understand current SLR projections, the key components of mental well-being and how SLR can influence changes to mental well-being. This literature review then shaped a questionnaire which was distributed to residents of the New Brighton coastline. This questionnaire asked respondents how they interact with the local environment, how much they know about SLR and its associated hazards, whether SLR causes any level of stress or worry along with how respondents feel that these impacts could be mitigated. This research found that SLR impacts the mental well-being of those living in low-lying coastal communities through various methods: firstly, the respondents perceived risk to SLR and its associated hazards, which was found to be influenced by the suburbs that respondents live in, their knowledge of SLR, their main sources of information and the prior experience of the Canterbury Earthquake Sequence (CES). Secondly, the financial aspects of SLR were also found to be drivers of stress or worry, with depreciating property values and rising insurance premiums being frequently noted by respondents. It was found that the majority of respondents agreed that being involved in and informed of the protection process, having more readable and accurate information, and an increased engagement with community events and greenspaces would help to reduce the stress or worry caused by SLR, while remaining adaptable to future environmental change.
The question of whether forced relocation is beneficial or detrimental to the displaced households is a controversial and important policy question. After the 2011 earthquake in Christchurch, the government designated some of the worst affected areas as Residential Red Zones. Around 20,000 people were forced to move out of these Residential Red Zone areas, and were compensated for that. The objective of this paper is twofold. First, we aim to estimate the impact of relocation on the displaced households in terms of their income, employment, and their mental and physical health. Second, we evaluate whether the impact of relocation varies by the timing of to move, the destination (remaining within the Canterbury region or moving out of it) and demographic factors (gender, age, ethnicity). StatisticsNZ’s Integrated Data Infrastructure (IDI) from 2008 to 2017, which includes data on all households in Canterbury, and a difference-in-difference (DID) technique is used to answer these questions. We find that relocation has a negative impact on the income of the displaced household group. This adverse impact is more severe for later movers. Compared to the control group (that was not relocated), the income of relocated households was reduced by 3% for people who moved immediately after the earthquake in 2011, and 14% for people who moved much later in 2015.
The earthquake engineering community is currently grappling with the need to improve the post-earthquake reparability of buildings. As part of this, proposals exist to change design criteria for the serviceability limit state (SLS). This paper reviews options for change and considers how these could impact the expected repair costs for typical New Zealand buildings. The expected annual loss (EAL) is selected as a relevant measure or repair costs and performance because (i) EAL provides information on the performance of a building considering a range of intensity levels, (ii) the insurance industry refers to EAL when setting premiums, and (iii) monetary losses are likely to be correlated with loss of building functionality. The paper argues that because the expected annual loss is affected by building performance over a range of intensity levels, the definition of SLS criteria alone may be insufficient to effectively limit losses. However, it is also explained that losses could be limited effectively if the loadings standard were to set the SLS design intensity considering the potential implications on EAL. It is shown that in order to achieve similar values of EAL in Wellington and Christchurch, the return period intensity for SLS design would need to be higher in Christchurch owing to differences in local hazard conditions. The observations made herein are based on a simplified procedure for EAL estimation and hence future research should aim to verify the findings using a detailed loss assessment approach applied to a broad range of case study buildings.
A pdf transcript of Heather's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Sripana Saha. Transcriber: Samuel Hope.
The 2013 Seddon earthquake (Mw 6.5), the 2013 Lake Grassmere earthquake (Mw 6.6), and the 2016 Kaikōura earthquake (Mw 7.8) provided an opportunity to assemble the most extensive damage database to wine storage tanks ever compiled worldwide. An overview of this damage database is presented herein based on the in-field post-earthquake damage data collected for 2058 wine storage tanks (1512 legged tanks and 546 flat-based tanks) following the 2013 earthquakes and 1401 wine storage tanks (599 legged tanks and 802 flat-based tanks) following the 2016 earthquake. Critique of the earthquake damage database revealed that in 2013, 39% and 47% of the flat-based wine tanks sustained damage to their base shells and anchors respectively, while due to resilience measures implemented following the 2013 earthquakes, in the 2016 earthquake the damage to tank base shells and tank anchors of flat-based wine tanks was reduced to 32% and 23% respectively and instead damage to tank barrels (54%) and tank cones (43%) was identified as the two most frequently occurring damage modes for this type of tank. Analysis of damage data for legged wine tanks revealed that the frame-legs of legged wine tanks sustained the greatest damage percentage among different parts of legged tanks in both the 2013 earthquakes (40%) and in the 2016 earthquake (44%). Analysis of damage data and socio-economic findings highlight the need for industry-wide standards, which may have socio-economic implications for wineries.
A pdf transcript of Robin Robins's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Lucy Denham. Transcriber: Maggie Blackwood.
A pdf transcript of Peter Ngatuere's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Lucy Denham. Transcriber: Lucy Denham.