Search

found 7 results

Research papers, University of Canterbury Library

Despite the relatively low seismicity, a large earthquake in the Waikato region is expected to have a high impact, when the fourth-largest regional population and economy and the high density critical infrastructure systems in this region are considered. Furthermore, Waikato has a deep soft sedimentary basin, which increases the regional seismic hazard due to trapping and amplification of seismic waves and generation of localized surface waves within the basin. This phenomenon is known as the “Basin Effect”, and has been attributed to the increased damage in several historic earthquakes, including the 2010-2011 Canterbury earthquakes. In order to quantitatively model the basin response and improve the understanding of regional seismic hazard, geophysical methods will be used to develop shear wave velocity profiles across the Waikato basin. Active surface wave methods involve the deployment of linear arrays of geophones to record the surface waves generated by a sledge hammer. Passive surface wave methods involve the deployment of two-dimensional seismometer arrays to record ambient vibrations. At each site, the planned testing includes one active test and two to four passive arrays. The obtained data are processed to develop dispersion curves, which describe surface wave propagation velocity as a function of frequency (or wavelength). Dispersion curves are then inverted using the Geopsy software package to develop a suite of shear wave velocity profiles. Currently, more than ten sites in Waikato are under consideration for this project. This poster presents the preliminary results from the two sites that have been tested. The shear wave velocity profiles from all sites will be used to produce a 3D velocity model for the Waikato basin, a part of QuakeCoRE flagship programme 1.

Research papers, University of Canterbury Library

On 15 August 1868, a great earthquake struck off the coast of the Chile-Peru border generating a tsunami that travelled across the Pacific. Wharekauri-Rekohu-Chatham Islands, located 800 km east of Christchurch, Aotearoa-New Zealand (A-NZ) was one of the worst affected locations in A-NZ. Tsunami waves, including three over 6 metres high, injured and killed people, destroyed buildings and infrastructure, and impacted the environment, economy and communities. While experience of disasters, and advancements in disaster risk reduction systems and technology have all significantly advanced A-NZ’s capacity to be ready for and respond to future earthquakes and tsunami, social memory of this event and other tsunamis during our history has diminished. In 2018, a team of scientists, emergency managers and communication specialists collaborated to organise a memorial event on the Chatham Islands and co-ordinate a multi-agency media campaign to commemorate the 150th anniversary of the 1868 Arica tsunami. The purpose was to raise awareness of the disaster and to encourage preparedness for future tsunami. Press releases and science stories were distributed widely by different media outlets and many attended the memorial event indicating public interest for commemorating historical disasters. We highlight the importance of commemorating disaster anniversaries through memorial events, to raise awareness of historical disasters and increase community preparedness for future events – “lest we forget and let us learn.”

Research papers, University of Canterbury Library

The purpose of this research is to investigate men’s experiences of the 2016 7.8 magnitude Kaikōura earthquake and Tsunami. While, research into the impacts of the earthquake has been conducted, few studies have examined how gender shaped people’s experiences of this natural hazard event. Analysing disasters through a gender lens has significantly contributed to disaster scholarship in identifying the resilience and vulnerabilities of individuals and communities pre- and post-disaster (Fordham, 2012; Bradshaw, 2013). This research employs understandings of masculinities (Connell, 2005), to examine men’s strengths and challenges in responding, recovering, and coping following the earthquake. Qualitative inquiry was carried out in Northern Canterbury and Marlborough involving 18 face-to-face interviews with men who were impacted by the Kaikōura earthquake and its aftermath. Interview material is being analysed using thematic and narrative analysis. Some of the preliminary findings have shown that men took on voluntary roles in addition to their fulltime paid work resulting in long hours, poor sleep and little time spent with family. Some men assisted wives and children to high ground then drove into the tsunami zone to check on relatives or to help evacuate people. Although analysis of the findings is currently ongoing, preliminary findings have identified that the men who participated in the study have been negatively impacted by the 2016 Kaikōura earthquake. A theme identified amongst participants was an avoidance to seek support with the challenges they were experiencing due to the earthquake. The research findings align with key characteristics of masculinity, including demonstrating risky behaviours and neglecting self or professional care. This study suggests that these behaviours affect men’s overall resilience, and thus the resilience of the wider community.

Research papers, University of Canterbury Library

This study explicitly investigates uncertainties in physics-based ground motion simulation validation for earthquakes in the Canterbury region. The simulations utilise the Graves and Pitarka (2015) hybrid methodology, with separately quantified parametric uncertainties in the comprehensive physics and simplified physics components of the model. The study is limited to the simulation of 148 small magnitude (Mw 3.5 – 5) earthquakes, with a point source approximation for the source rupture representations, which also enables a focus on a small number of relevant uncertainties. The parametric uncertainties under consideration were selected through sensitivity analysis, and specifically include: magnitude, Brune stress parameter and high frequency rupture velocity. Twenty Monte Carlo realisations were used to sample parameter uncertainties for each of the 148 events. Residuals associated with the following intensity measures: spectral acceleration, peak ground velocity, arias intensity and significant duration, were ascertained. Using these residuals, validation was performed through assessment of systematic biases in site and source terms from mixed-effects regression. Based on the results to date, initial standard deviation recommendations for parameter uncertainties, based on the Canterbury simulations have been obtained. This work ultimately provides an initial step toward explicit incorporation of modelling uncertainty in simulated ground motion predictions for future events, which will improve the use of simulation models in seismic hazard analysis. We plan to subsequently assess uncertainties for larger magnitude events with more complex ruptures, and events across a larger geographic region, as well as uncertainties due to path attenuation, site effects, and more general model epistemic uncertainties.

Research papers, University of Canterbury Library

Seismic isolation is an effective technology for significantly reducing damage to buildings and building contents. However, its application to light-frame wood buildings has so far been unable to overcome cost and technical barriers such as susceptibility to movement during high-wind loading. The precursor to research in the field of isolation of residential buildings was the 1994 Northridge Earthquake (6.7 MW) in the United States and the 1995 Kobe Earthquake (6.9 MW) in Japan. While only a small number of lives were lost in residential buildings in these events, the economic impact was significant with over half of earthquake recovery costs given to repair and reconstruction of residential building damage. A value case has been explored to highlight the benefits of seismically isolated residential buildings compared to a standard fixed-base dwellings for the Wellington region. Loss data generated by insurance claim information from the 2011 Christchurch Earthquake has been used by researchers to determine vulnerability functions for the current light-frame wood building stock. By further considering the loss attributed to drift and acceleration sensitive components, and a simplified single degree of freedom (SDOF) building model, a method for determining vulnerability functions for seismic isolated buildings was developed. Vulnerability functions were then applied directly in a loss assessment using the GNS developed software, RiskScape. Vulnerability was shown to dramatically reduce for isolated buildings compared to an equivalent fixed-base building and as a result, the monetary savings in a given earthquake scenario were significant. This work is expected to drive further interest for development of solutions for the seismic isolation of residential dwellings, of which one option is further considered and presented herein.

Research papers, University of Canterbury Library

The purpose of this research is to investigate men’s experiences of the 2016 7.8 magnitude Kaikōura earthquake and Tsunami. While, research into the impacts of the earthquake has been conducted, few studies have examined how gender shaped people’s experiences of this natural hazard event. Analysing disasters through a gender lens has significantly contributed to disaster scholarship in identifying the resilience and vulnerabilities of individuals and communities pre- and post-disaster (Fordham, 2012; Bradshaw, 2013). This research employs understandings of masculinities (Connell, 2005), to examine men’s strengths and challenges in responding, recovering, and coping following the earthquake. Qualitative inquiry was carried out in Northern Canterbury and Marlborough involving 18 face-to-face interviews with men who were impacted by the Kaikōura earthquake and its aftermath. Interview material is being analysed using thematic and narrative analysis. Some of the preliminary findings have shown that men took on voluntary roles in addition to their fulltime paid work resulting in long hours, poor sleep and little time spent with family. Some men assisted wives and children to high ground then drove into the tsunami zone to check on relatives or to help evacuate people. Although analysis of the findings is currently ongoing, preliminary findings have identified that the men who participated in the study have been negatively impacted by the 2016 Kaikōura earthquake. A theme identified amongst participants was an avoidance to seek support with the challenges they were experiencing due to the earthquake. The research findings align with key characteristics of masculinity, including demonstrating risky behaviours and neglecting self or professional care. This study suggests that these behaviours affect men’s overall resilience, and thus the resilience of the wider community.

Research papers, The University of Auckland Library

Industrial steel storage pallet racking systems are used extensively worldwide to store goods. Forty percent of all goods are stored on storage racks at some time during their manufactureto- consumption life. In 2017, goods worth USD 16.5 billion were carried on cold-formed steel racking systems in seismically active regions worldwide. Historically, these racks are particularly vulnerable to collapse in severe earthquakes. In the 2010/2011 Christchurch earthquakes, around NZD 100 million of pallet racking stored goods were lost, with much greater associated economic losses due to disruptions to the national supply chain. A novel component, the friction slipper baseplate, has been designed and developed to very significantly improve the seismic performance of a selective pallet racking system in both the cross-aisle and the down-aisle directions. This thesis documents the whole progress of the development of the friction slipper baseplate from the design concept development to experimental verification and incorporation into the seismic design procedure for selective pallet racking systems. The test results on the component joint tests, full-scale pull-over and snap-back tests and fullscale shaking table tests of a steel storage racking system are presented. The extensive experimental observations show that the friction slipper baseplate exhibits the best seismic performance in both the cross-aisle and the down-aisle directions compared with all the other base-connections tested. It protects the rack frame and concrete floor from damage, reduces the risk of overturning in the cross-aisle direction, and minimises the damage at beam-end connectors in the down-aisle direction, without sustaining damage to the connection itself. Moreover, this high level of seismic performance can be delivered by a simple and costeffective baseplate with almost no additional cost. The significantly reduced internal force and frame acceleration response enable the more cost-effective and safer design of the pallet racking system with minimal extra cost for the baseplate. The friction slipper baseplate also provides enhanced protection to the column base from operational impact damage compared with other seismic resisting and standard baseplates.